Qing Yang, Xuan Liu, Shuwen Yu, Zhendong Feng, Lixin Liang, Wei Qin, Youyang Wang, Xiaobo Hu, Shaoqiang Chen, Zhaochi Feng, Guangjin Hou, Kaifeng Wu, Xin Guo and Can Li
{"title":"Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells†","authors":"Qing Yang, Xuan Liu, Shuwen Yu, Zhendong Feng, Lixin Liang, Wei Qin, Youyang Wang, Xiaobo Hu, Shaoqiang Chen, Zhaochi Feng, Guangjin Hou, Kaifeng Wu, Xin Guo and Can Li","doi":"10.1039/D1EE02248B","DOIUrl":null,"url":null,"abstract":"<p >Inverted perovskite solar cells (i-PSCs) manifest negligible hysteresis and potential to construct tandem solar cells attracting much attention, but their power conversion efficiency (PCE) still lags behind those of conventional ones due to non-radiative recombination from defect states and mismatched energy-level alignment for electron transport. Herein, we report on employing a hydroxylated non-fullerene acceptor (NFA), termed IT-DOH, to modify the interface between the perovskite and the electron transport layer (ETL) for reduced defects and improved electron transport. Compared with –CN and –C<img>O groups in the parent molecule ITIC, additional –OH groups in IT-DOH can further suppress defect states by interacting with undercoordinated Pb<small><sup>2+</sup></small>. More importantly, the conjugated planes of IT-DOH can be elongated by intermolecular hydrogen-bonding interactions, leading to a long-range-ordered molecular arrangement and face-on orientation, which facilitates the electron transport from the perovskite to the ETL through IT-DOH molecules. Consequently, a record PCE of 22.09% among reported i-PSCs modified by NFAs is achieved from IT-DOH-treated i-PSCs. Our work highlights the importance of molecular ordering and orientation of the NFAs as interfacial materials, and provides a guideline to design NFAs by hydroxylation for highly efficient and stable i-PSCs.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 12","pages":" 6536-6545"},"PeriodicalIF":32.4000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ee/d1ee02248b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Inverted perovskite solar cells (i-PSCs) manifest negligible hysteresis and potential to construct tandem solar cells attracting much attention, but their power conversion efficiency (PCE) still lags behind those of conventional ones due to non-radiative recombination from defect states and mismatched energy-level alignment for electron transport. Herein, we report on employing a hydroxylated non-fullerene acceptor (NFA), termed IT-DOH, to modify the interface between the perovskite and the electron transport layer (ETL) for reduced defects and improved electron transport. Compared with –CN and –CO groups in the parent molecule ITIC, additional –OH groups in IT-DOH can further suppress defect states by interacting with undercoordinated Pb2+. More importantly, the conjugated planes of IT-DOH can be elongated by intermolecular hydrogen-bonding interactions, leading to a long-range-ordered molecular arrangement and face-on orientation, which facilitates the electron transport from the perovskite to the ETL through IT-DOH molecules. Consequently, a record PCE of 22.09% among reported i-PSCs modified by NFAs is achieved from IT-DOH-treated i-PSCs. Our work highlights the importance of molecular ordering and orientation of the NFAs as interfacial materials, and provides a guideline to design NFAs by hydroxylation for highly efficient and stable i-PSCs.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).