Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized Brassica napus cultivar.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gayatri Goswami, Ujjal Kumar Nath, Jong-In Park, Mohammad Rashed Hossain, Manosh Kumar Biswas, Hoy-Taek Kim, Hye Ran Kim, Ill-Sup Nou
{"title":"Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized <i>Brassica napus</i> cultivar.","authors":"Gayatri Goswami,&nbsp;Ujjal Kumar Nath,&nbsp;Jong-In Park,&nbsp;Mohammad Rashed Hossain,&nbsp;Manosh Kumar Biswas,&nbsp;Hoy-Taek Kim,&nbsp;Hye Ran Kim,&nbsp;Ill-Sup Nou","doi":"10.1186/s40709-018-0090-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated <i>Brassica napus</i> anthocyanin biosynthesis.</p><p><strong>Results: </strong>We developed a high-anthocyanin resynthesized <i>B. napus</i> line, Rs035, by crossing anthocyanin-rich <i>B. rapa</i> (A genome) and <i>B. oleracea</i> (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in <i>Arabidopsis thaliana</i> and <i>B. napus</i>. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation.</p><p><strong>Conclusions: </strong>Our study lays the foundation for producing high-anthocyanin <i>B. napus</i> cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-018-0090-6","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-018-0090-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 23

Abstract

Background: Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis.

Results: We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation.

Conclusions: Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.

Abstract Image

Abstract Image

Abstract Image

高花青素再合成油菜品种花青素生物合成的转录调控。
背景:花青素是植物的次生代谢产物,在吸引昆虫授粉和抵御生物和非生物胁迫方面发挥着关键作用。作为人类饮食的一部分,它们具有潜在的健康促进作用。花青素的生物合成已在许多物种中得到阐明,使富含花青素的水果、蔬菜和谷物得以发展;然而,很少有研究对甘蓝型油菜花青素的生物合成进行研究。结果:我们通过将富含花青素的菜心甘蓝(a基因组)和甘蓝(C基因组)系杂交,然后进行染色体加倍,获得了一个高花青素再合成的甘蓝型油菜品系Rs035。我们在A和C基因组中分别鉴定和鉴定了73个和58个花青素生物合成基因;这些基因与拟南芥和甘蓝型油菜中的41个基因存在同基因关系。在同基因中,12个生物合成基因和6个调控基因在Rs035中表现出超高表达,8个结构基因和1个调控基因表现出加性表达。我们确定了三个早期、四个晚期生物合成途径、三个转录调节基因和一个转运蛋白作为增强Rs035中花青素积累的假定候选者。主成分分析和Pearson相关系数证实了这些基因对花青素积累的贡献。结论:本研究为生产高花青素的甘蓝型油菜品种奠定了基础。我们已经鉴定的再合成品系和差异表达基因可以用于通过分子和常规育种将花青素性状转移到其他商业油菜品系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信