Mariusz Budaj, Andrzej Michalski, Bogdan Miśkowiak, Katarzyna Filipecka, Sylwia Mandecka
{"title":"[Study of the structure of contact lenses using PALS, MIR and Raman spectroscopy in the regard of safety of persons exposed to ionizing radiation].","authors":"Mariusz Budaj, Andrzej Michalski, Bogdan Miśkowiak, Katarzyna Filipecka, Sylwia Mandecka","doi":"10.17219/pim/96287","DOIUrl":null,"url":null,"abstract":"<p><p>Among patients and health professionals who are exposed to ionizing radiation during diagnostic and therapeutic procedures, refractive errors are common and soft contact lenses are widely used to correct them. Changes in the inner structure of contact lens may influence the safety of its usage through modification of its water content or oxygen accessibility to cornea. Therefore, analysis of impact of external factors, therein ionizing radiation used in medicine, on contact lenses parameters is necessary, particularly to compare the presence of free volume gaps in the structure of the polymer soft contact lenses. Possible change in dimensions or quantity of free volume gaps in the structure of the material caused by the exposure to ionizing radiation may have negative influence on oxygen permeability. To prevent such process, different means could be used, i.a., positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy and mid-infrared spectroscopy (MIR). Use of contact lenses which reduce transport of oxygen to cornea increases the risk of corneal hypoxia - one of the possible complications of using contact lenses. Research on effects of different types of ionizing radiation (X-ray, gamma, beta) on materials used in production of contact lenses is vital because of the connection of this issue with the safety of contact lenses wearers. Such research can also shed light on the problem of safe use of contact lenses by persons exposed to ionizing radiation.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"48 1","pages":"5-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/96287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Among patients and health professionals who are exposed to ionizing radiation during diagnostic and therapeutic procedures, refractive errors are common and soft contact lenses are widely used to correct them. Changes in the inner structure of contact lens may influence the safety of its usage through modification of its water content or oxygen accessibility to cornea. Therefore, analysis of impact of external factors, therein ionizing radiation used in medicine, on contact lenses parameters is necessary, particularly to compare the presence of free volume gaps in the structure of the polymer soft contact lenses. Possible change in dimensions or quantity of free volume gaps in the structure of the material caused by the exposure to ionizing radiation may have negative influence on oxygen permeability. To prevent such process, different means could be used, i.a., positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy and mid-infrared spectroscopy (MIR). Use of contact lenses which reduce transport of oxygen to cornea increases the risk of corneal hypoxia - one of the possible complications of using contact lenses. Research on effects of different types of ionizing radiation (X-ray, gamma, beta) on materials used in production of contact lenses is vital because of the connection of this issue with the safety of contact lenses wearers. Such research can also shed light on the problem of safe use of contact lenses by persons exposed to ionizing radiation.