{"title":"Importance of bacterial biodegradation and detoxification processes of microcystins for environmental health.","authors":"Isaac Yaw Massey, Xian Zhang, Fei Yang","doi":"10.1080/10937404.2018.1532701","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystins (MC) the most frequently reported cyanobacterial harmful algal bloom toxins primarily found in some species of freshwater genera pose a serious threat to human and animal health. To reduce health risks associated with MC exposure it is important to remove these toxins found in drinking and recreational waterbodies. Since the physical and chemical water treatment methods are inefficient in completely degrading MC, alternative approaches to effectively detoxify MC have become the focus of global research. The aim of this review was to provide the current approach to cost-effective biological treatment methods which utilize bacteria to degrade MC without generation of harmful by-products. In addition, the catabolic pathways involved in MC-degradation involving proteins encoded mlr gene cluster, intermediate products and efficiencies of bacteria strain/bacteria community are presented and compared.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"21 6-8","pages":"357-369"},"PeriodicalIF":6.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2018.1532701","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2018.1532701","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 40
Abstract
Microcystins (MC) the most frequently reported cyanobacterial harmful algal bloom toxins primarily found in some species of freshwater genera pose a serious threat to human and animal health. To reduce health risks associated with MC exposure it is important to remove these toxins found in drinking and recreational waterbodies. Since the physical and chemical water treatment methods are inefficient in completely degrading MC, alternative approaches to effectively detoxify MC have become the focus of global research. The aim of this review was to provide the current approach to cost-effective biological treatment methods which utilize bacteria to degrade MC without generation of harmful by-products. In addition, the catabolic pathways involved in MC-degradation involving proteins encoded mlr gene cluster, intermediate products and efficiencies of bacteria strain/bacteria community are presented and compared.
期刊介绍:
"Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health.
Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews."
The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.