Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways.

ALTEX Pub Date : 2019-01-01 Epub Date: 2018-10-16 DOI:10.14573/altex.1808241
Edward J Perkins, Kalyan Gayen, Jason E Shoemaker, Philipp Antczak, Lyle Burgoon, Francesco Falciani, Steve Gutsell, Geoff Hodges, Aude Kienzler, Dries Knapen, Mary McBride, Catherine Willett, Francis J Doyle, Natàlia Garcia-Reyero
{"title":"Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways.","authors":"Edward J Perkins,&nbsp;Kalyan Gayen,&nbsp;Jason E Shoemaker,&nbsp;Philipp Antczak,&nbsp;Lyle Burgoon,&nbsp;Francesco Falciani,&nbsp;Steve Gutsell,&nbsp;Geoff Hodges,&nbsp;Aude Kienzler,&nbsp;Dries Knapen,&nbsp;Mary McBride,&nbsp;Catherine Willett,&nbsp;Francis J Doyle,&nbsp;Natàlia Garcia-Reyero","doi":"10.14573/altex.1808241","DOIUrl":null,"url":null,"abstract":"<p><p>Current efforts in chemical safety are focused on utilizing human in vitro or alternative animal data in biological pathway context. However, it remains unclear how biological pathways, and toxicology data developed in that context, can be used to quantitatively facilitate decision-making.  The objective of this work is to determine if hypothesis testing using Adverse Outcome Pathways (AOPs) can provide quantitative chemical hazard predictions.  Current methods for predicting hazards of chemicals in a biological pathway context were extensively reviewed, specific case studies examined and computational modeling used to demonstrate quantitative hazard prediction based on an AOP. Since AOPs are chemically agnostic, we propose that AOPs function as hypotheses for how specific chemicals may cause adverse effects via specific pathways. Three broad approaches were identified for testing the hypothesis with AOPs, semi-quantitative weight of evidence, probabilistic, and mechanistic modeling. We then demonstrate how these approaches could be used to test hypotheses using high throughput in vitro data and alternative animal data. Finally, we discuss standards in development and documentation that would facilitate use in a regulatory context. We conclude that quantitative AOPs provide a flexible hypothesis framework for predicting chemical hazards. It accommodates a wide range of approaches that are useful at many stages and build upon one another to become increasingly quantitative.</p>","PeriodicalId":520550,"journal":{"name":"ALTEX","volume":" ","pages":"91-102"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ALTEX","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.1808241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Current efforts in chemical safety are focused on utilizing human in vitro or alternative animal data in biological pathway context. However, it remains unclear how biological pathways, and toxicology data developed in that context, can be used to quantitatively facilitate decision-making.  The objective of this work is to determine if hypothesis testing using Adverse Outcome Pathways (AOPs) can provide quantitative chemical hazard predictions.  Current methods for predicting hazards of chemicals in a biological pathway context were extensively reviewed, specific case studies examined and computational modeling used to demonstrate quantitative hazard prediction based on an AOP. Since AOPs are chemically agnostic, we propose that AOPs function as hypotheses for how specific chemicals may cause adverse effects via specific pathways. Three broad approaches were identified for testing the hypothesis with AOPs, semi-quantitative weight of evidence, probabilistic, and mechanistic modeling. We then demonstrate how these approaches could be used to test hypotheses using high throughput in vitro data and alternative animal data. Finally, we discuss standards in development and documentation that would facilitate use in a regulatory context. We conclude that quantitative AOPs provide a flexible hypothesis framework for predicting chemical hazards. It accommodates a wide range of approaches that are useful at many stages and build upon one another to become increasingly quantitative.

使用定量不良结果路径的化学危害预测和假设检验。
目前在化学品安全方面的努力主要集中在利用人体体外或替代动物数据在生物途径背景下。然而,目前尚不清楚在这种情况下如何利用生物学途径和毒理学数据来定量地促进决策。这项工作的目的是确定使用不良结果途径(AOPs)的假设检验是否可以提供定量的化学危害预测。广泛审查了目前预测生物途径背景下化学品危害的方法,检查了具体的案例研究,并使用计算模型来演示基于AOP的定量危害预测。由于AOPs是化学不可知的,我们提出AOPs作为特定化学物质如何通过特定途径引起不良反应的假设。确定了三种广泛的方法来检验假设:AOPs、半定量证据权重、概率和机制建模。然后,我们展示了这些方法如何使用高通量体外数据和替代动物数据来测试假设。最后,我们将讨论开发和文档中的标准,这些标准将促进在监管上下文中的使用。我们认为定量AOPs为预测化学品危害提供了一个灵活的假设框架。它容纳了广泛的方法,这些方法在许多阶段都是有用的,并且相互建立以变得越来越量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信