Jun Dong, Lili Zhu, Pengju Guo, Cunyun Xu, Xusheng Zhao, Shijing Yang, Xiaofeng He, Guangdong Zhou, Gang Ma, Hengyu Guo, Chenguo Hu and Qunliang Song
{"title":"A bio-inspired total current nanogenerator†","authors":"Jun Dong, Lili Zhu, Pengju Guo, Cunyun Xu, Xusheng Zhao, Shijing Yang, Xiaofeng He, Guangdong Zhou, Gang Ma, Hengyu Guo, Chenguo Hu and Qunliang Song","doi":"10.1039/D2EE02621J","DOIUrl":null,"url":null,"abstract":"<p >Conventional nanogenerators typically employ displacement current as the driving force to output alternating current (AC). It is thus inevitable to face a series of complex power management issues, such as AC–DC conversion and AC phase asynchrony, leading to a bulky, inefficient and costly energy harvesting system. Here, inspired by the electricity generation mechanism of electric rays, a high-performance droplet-based nanogenerator on the basis of solid–liquid contact electrification is developed, which employs both displacement current and conduction current as the driving forces to output high-voltage direct current (DC) without a rectifier. This new device, defined as a total current nanogenerator, has the characteristics of compact array architecture, high-voltage DC output, and controllable energy release, successfully realizing the voltage-controlled electric shock process. Since the output voltage of the developed nanogenerator is as high as 3000 V, a single discharge is sufficient to light up more than 1260 LEDs, demonstrating its unparalleled capability for harvesting high-entropy water energy. The total current nanogenerator proposed in this work provides new insights into the theory and technology of energy harvesting from solid–liquid interfaces.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 3","pages":" 1071-1081"},"PeriodicalIF":30.8000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ee/d2ee02621j","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Conventional nanogenerators typically employ displacement current as the driving force to output alternating current (AC). It is thus inevitable to face a series of complex power management issues, such as AC–DC conversion and AC phase asynchrony, leading to a bulky, inefficient and costly energy harvesting system. Here, inspired by the electricity generation mechanism of electric rays, a high-performance droplet-based nanogenerator on the basis of solid–liquid contact electrification is developed, which employs both displacement current and conduction current as the driving forces to output high-voltage direct current (DC) without a rectifier. This new device, defined as a total current nanogenerator, has the characteristics of compact array architecture, high-voltage DC output, and controllable energy release, successfully realizing the voltage-controlled electric shock process. Since the output voltage of the developed nanogenerator is as high as 3000 V, a single discharge is sufficient to light up more than 1260 LEDs, demonstrating its unparalleled capability for harvesting high-entropy water energy. The total current nanogenerator proposed in this work provides new insights into the theory and technology of energy harvesting from solid–liquid interfaces.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).