Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2019-01-10 Epub Date: 2018-08-07 DOI:10.1016/j.scitotenv.2018.08.087
Chuan Wu, Lizheng Shi, Shengguo Xue, Waichin Li, Xingxing Jiang, Manikandan Rajendran, Ziyan Qian
{"title":"Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils.","authors":"Chuan Wu,&nbsp;Lizheng Shi,&nbsp;Shengguo Xue,&nbsp;Waichin Li,&nbsp;Xingxing Jiang,&nbsp;Manikandan Rajendran,&nbsp;Ziyan Qian","doi":"10.1016/j.scitotenv.2018.08.087","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium contamination in paddy soils has aroused increasing concern around the world, and biochar has many positive properties, such as large specific surface areas, micro porous structure for the heavy metal immobilization in soils. However there are few studies on sulfur-iron modified biochar as well as its microbiology effects. The purpose of this study was to evaluate the Cd immobilization effects of sulfur or sulfur-iron modified biochar and its related microbial community changes in Cd-contaminated soils. SEM-EDX analysis confirmed that sulfur and iron were loaded on the raw biochar successfully. Sulfur-modified biochar (S-BC) and sulfur-iron modified biochar (SF-BC) addition increased pH value and the content of soil organic matter, and also decreased DTPA-extractable Cd. There was a negative significant correlation between organic matter content and the available Cd (P < 0.05). During a 45-d incubation period, the fractions of Cd are mainly with the exchangeable (25.16-35.79%) and carbonate (22.01-25.10%) fractions. Compared with the control, the concentrations of exchangeable Cd in soil were significantly (P < 0.05) decreased by 12.54%, 29.71%, 18.53% under the treatments of BC, S-BC, SF-BC respectively. The S-BC and SF-BC treatments significantly (P < 0.05) increased Chao1, observed, Shannon and Simpson diversity indices compared with the control and biochar treatments. Meanwhile, the relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria increased, whereas the abundance of Acidobacteria and Germmatimonadetes decreased. Capsule: Sulfur-modified and sulfur-iron modified biochar applications decreased the available Cd and changed the microbial community.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"647 ","pages":"1158-1168"},"PeriodicalIF":8.2000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.scitotenv.2018.08.087","citationCount":"149","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2018.08.087","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 149

Abstract

Cadmium contamination in paddy soils has aroused increasing concern around the world, and biochar has many positive properties, such as large specific surface areas, micro porous structure for the heavy metal immobilization in soils. However there are few studies on sulfur-iron modified biochar as well as its microbiology effects. The purpose of this study was to evaluate the Cd immobilization effects of sulfur or sulfur-iron modified biochar and its related microbial community changes in Cd-contaminated soils. SEM-EDX analysis confirmed that sulfur and iron were loaded on the raw biochar successfully. Sulfur-modified biochar (S-BC) and sulfur-iron modified biochar (SF-BC) addition increased pH value and the content of soil organic matter, and also decreased DTPA-extractable Cd. There was a negative significant correlation between organic matter content and the available Cd (P < 0.05). During a 45-d incubation period, the fractions of Cd are mainly with the exchangeable (25.16-35.79%) and carbonate (22.01-25.10%) fractions. Compared with the control, the concentrations of exchangeable Cd in soil were significantly (P < 0.05) decreased by 12.54%, 29.71%, 18.53% under the treatments of BC, S-BC, SF-BC respectively. The S-BC and SF-BC treatments significantly (P < 0.05) increased Chao1, observed, Shannon and Simpson diversity indices compared with the control and biochar treatments. Meanwhile, the relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria increased, whereas the abundance of Acidobacteria and Germmatimonadetes decreased. Capsule: Sulfur-modified and sulfur-iron modified biochar applications decreased the available Cd and changed the microbial community.

硫铁改性生物炭对污染土壤中有效镉和细菌群落结构的影响
水稻土中的镉污染问题日益引起世界各国的关注,而生物炭具有比表面积大、微孔结构等优点,对土壤中的重金属具有固定化作用。然而,对硫铁改性生物炭及其微生物学效果的研究很少。本研究旨在评价硫或硫铁改性生物炭在镉污染土壤中的固定化效果及其相关微生物群落的变化。SEM-EDX分析证实,硫和铁成功负载在生炭上。添加硫改性生物炭(S-BC)和硫铁改性生物炭(SF-BC)提高了土壤pH值和有机质含量,降低了土壤dtpa可提取Cd含量,有机质含量与有效Cd (P)呈显著负相关
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信