Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals.

IF 1.4 Q4 GENETICS & HEREDITY
Current genetic medicine reports Pub Date : 2018-01-01 Epub Date: 2018-05-29 DOI:10.1007/s40142-018-0141-1
Pierre Dourlen, Julien Chapuis, Jean-Charles Lambert
{"title":"Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals.","authors":"Pierre Dourlen, Julien Chapuis, Jean-Charles Lambert","doi":"10.1007/s40142-018-0141-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis.</p><p><strong>Recent findings: </strong>To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the <i>Drosophila</i> model (primarily with reference to AD).</p><p><strong>Summary: </strong>We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.</p>","PeriodicalId":72731,"journal":{"name":"Current genetic medicine reports","volume":"6 3","pages":"107-115"},"PeriodicalIF":1.4000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current genetic medicine reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40142-018-0141-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis.

Recent findings: To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD).

Summary: We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.

Abstract Image

利用高通量动物模型或基于细胞的模型,从功能上描述 GWAS 信号。
综述的目的:全基因组关联研究(GWAS)的出现为我们了解多因素疾病的遗传结构带来了突破性进展。就阿尔茨海默病(AD)而言,已经确定了 20 多个风险基因位点。然而,我们现在面临着三个新的挑战:(i) 确定每个位点上的一个或多个功能性 SNP,(ii) 确定每个位点上的致病基因,(iii) 了解这些基因对发病机制的贡献:为了解决这些问题,从而从功能上描述 GWAS 信号,人们在基于细胞的模型和全动物模型中实施了一系列高通量策略。在此,我们回顾了高通量筛选、高内涵筛选以及果蝇模型的使用(主要是针对注意力缺失症)。摘要:我们介绍了这些策略是如何成功用于从功能上描述 GWAS 定义的风险位点中的基因的。未来,这些策略应有助于将 GWAS 数据转化为知识和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信