{"title":"Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model.","authors":"Jianfeng Hu, Jianliang Min","doi":"10.1007/s11571-018-9485-1","DOIUrl":null,"url":null,"abstract":"<p><p>Driver fatigue is increasingly a contributing factor for traffic accidents, so an effective method to automatically detect driver fatigue is urgently needed. In this study, in order to catch the main characteristics of the EEG signals, four types of entropies (based on the EEG signal of a single channel) were calculated as the feature sets, including sample entropy, fuzzy entropy, approximate entropy and spectral entropy. All feature sets were used as the input of a gradient boosting decision tree (GBDT), a fast and highly accurate boosting ensemble method. The output of GBDT determined whether a driver was in a fatigue state or not based on their EEG signals. Three state-of-the-art classifiers, k-nearest neighbor, support vector machine and neural network were also employed. To assess our method, several experiments including parameter setting and classification performance comparison were performed on 22 subjects. The results indicated that it is possible to use only one EEG channel to detect a driver fatigue state. The average highest recognition rate in this work was up to 94.0%, which could meet the needs of daily applications. Our GBDT-based method may assist in the detection of driver fatigue.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"12 4","pages":"431-440"},"PeriodicalIF":3.9000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11571-018-9485-1","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-018-9485-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 97
Abstract
Driver fatigue is increasingly a contributing factor for traffic accidents, so an effective method to automatically detect driver fatigue is urgently needed. In this study, in order to catch the main characteristics of the EEG signals, four types of entropies (based on the EEG signal of a single channel) were calculated as the feature sets, including sample entropy, fuzzy entropy, approximate entropy and spectral entropy. All feature sets were used as the input of a gradient boosting decision tree (GBDT), a fast and highly accurate boosting ensemble method. The output of GBDT determined whether a driver was in a fatigue state or not based on their EEG signals. Three state-of-the-art classifiers, k-nearest neighbor, support vector machine and neural network were also employed. To assess our method, several experiments including parameter setting and classification performance comparison were performed on 22 subjects. The results indicated that it is possible to use only one EEG channel to detect a driver fatigue state. The average highest recognition rate in this work was up to 94.0%, which could meet the needs of daily applications. Our GBDT-based method may assist in the detection of driver fatigue.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.