{"title":"Infinitesimal Probabilities.","authors":"Vieri Benci, Leon Horsten, Sylvia Wenmackers","doi":"10.1093/bjps/axw013","DOIUrl":null,"url":null,"abstract":"<p><p>Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. <b>1</b> <i>Introduction</i><b>2</b> <i>The Limits of Classical Probability Theory</i> <b>2.1</b> <i>Classical probability functions</i> <b>2.2</b> <i>Limitations</i> <b>2.3</b> <i>Infinitesimals to the rescue?</i><b>3</b> <i>NAP Theory</i> <b>3.1</b> <i>First four axioms of NAP</i> <b>3.2</b> <i>Continuity and conditional probability</i> <b>3.3</b> <i>The final axiom of NAP</i> <b>3.4</b> <i>Infinite sums</i> <b>3.5</b> <i>Definition of NAP functions via infinite sums</i> <b>3.6</b> <i>Relation to numerosity theory</i><b>4</b> <i>Objections and Replies</i> <b>4.1</b> <i>Cantor and the Archimedean property</i> <b>4.2</b> <i>Ticket missing from an infinite lottery</i> <b>4.3</b> <i>Williamson's infinite sequence of coin tosses</i> <b>4.4</b> <i>Point sets on a circle</i> <b>4.5</b> <i>Easwaran and Pruss</i><b>5</b> <i>Dividends</i> <b>5.1</b> <i>Measure and utility</i> <b>5.2</b> <i>Regularity and uniformity</i> <b>5.3</b> <i>Credence and chance</i> <b>5.4</b> <i>Conditional probability</i><b>6</b> <i>General Considerations</i> <b>6.1</b> <i>Non-uniqueness</i> <b>6.2</b> <i>Invariance</i><i>Appendix</i> .</p>","PeriodicalId":509962,"journal":{"name":"The British Journal for the Philosophy of Science","volume":"69 2","pages":"509-552"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/bjps/axw013","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Journal for the Philosophy of Science","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/bjps/axw013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. 1Introduction2The Limits of Classical Probability Theory2.1Classical probability functions2.2Limitations2.3Infinitesimals to the rescue?3NAP Theory3.1First four axioms of NAP3.2Continuity and conditional probability3.3The final axiom of NAP3.4Infinite sums3.5Definition of NAP functions via infinite sums3.6Relation to numerosity theory4Objections and Replies4.1Cantor and the Archimedean property4.2Ticket missing from an infinite lottery4.3Williamson's infinite sequence of coin tosses4.4Point sets on a circle4.5Easwaran and Pruss5Dividends5.1Measure and utility5.2Regularity and uniformity5.3Credence and chance5.4Conditional probability6General Considerations6.1Non-uniqueness6.2InvarianceAppendix .