Infinitesimal Probabilities.

Vieri Benci, Leon Horsten, Sylvia Wenmackers
{"title":"Infinitesimal Probabilities.","authors":"Vieri Benci,&nbsp;Leon Horsten,&nbsp;Sylvia Wenmackers","doi":"10.1093/bjps/axw013","DOIUrl":null,"url":null,"abstract":"<p><p>Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. <b>1</b> <i>Introduction</i><b>2</b> <i>The Limits of Classical Probability Theory</i>  <b>2.1</b> <i>Classical probability functions</i>  <b>2.2</b> <i>Limitations</i>  <b>2.3</b> <i>Infinitesimals to the rescue?</i><b>3</b> <i>NAP Theory</i>  <b>3.1</b> <i>First four axioms of NAP</i>  <b>3.2</b> <i>Continuity and conditional probability</i>  <b>3.3</b> <i>The final axiom of NAP</i>  <b>3.4</b> <i>Infinite sums</i>  <b>3.5</b> <i>Definition of NAP functions via infinite sums</i>  <b>3.6</b> <i>Relation to numerosity theory</i><b>4</b> <i>Objections and Replies</i>  <b>4.1</b> <i>Cantor and the Archimedean property</i>  <b>4.2</b> <i>Ticket missing from an infinite lottery</i>  <b>4.3</b> <i>Williamson's infinite sequence of coin tosses</i>  <b>4.4</b> <i>Point sets on a circle</i>  <b>4.5</b> <i>Easwaran and Pruss</i><b>5</b> <i>Dividends</i>  <b>5.1</b> <i>Measure and utility</i>  <b>5.2</b> <i>Regularity and uniformity</i>  <b>5.3</b> <i>Credence and chance</i>  <b>5.4</b> <i>Conditional probability</i><b>6</b> <i>General Considerations</i>  <b>6.1</b> <i>Non-uniqueness</i>  <b>6.2</b> <i>Invariance</i><i>Appendix</i> .</p>","PeriodicalId":509962,"journal":{"name":"The British Journal for the Philosophy of Science","volume":"69 2","pages":"509-552"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/bjps/axw013","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Journal for the Philosophy of Science","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/bjps/axw013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. 1Introduction2The Limits of Classical Probability Theory  2.1Classical probability functions  2.2Limitations  2.3Infinitesimals to the rescue?3NAP Theory  3.1First four axioms of NAP  3.2Continuity and conditional probability  3.3The final axiom of NAP  3.4Infinite sums  3.5Definition of NAP functions via infinite sums  3.6Relation to numerosity theory4Objections and Replies  4.1Cantor and the Archimedean property  4.2Ticket missing from an infinite lottery  4.3Williamson's infinite sequence of coin tosses  4.4Point sets on a circle  4.5Easwaran and Pruss5Dividends  5.1Measure and utility  5.2Regularity and uniformity  5.3Credence and chance  5.4Conditional probability6General Considerations  6.1Non-uniqueness  6.2InvarianceAppendix .

无穷小的概率。
非阿基米德概率函数允许我们将正则性与完全可加性结合起来。我们讨论了一个非阿基米德概率论的特定公理选择的哲学动机,并回答了一般对无穷小概率提出的一些哲学异议。经典概率论的局限性2.1经典概率函数2.2局限性2.3无穷小的拯救?3 NAP理论3.1 NAP的前四个公理3.2连续性和条件概率3.3 NAP的最终公理3.4无穷和3.5用无穷和定义NAP函数3.6与数论的关系4反对与回答4.1康托尔和阿基米德性质4.2从无限彩票中丢失的票4.3威廉姆森的掷硬币的无限序列4.4圆上的点集4.5 Easwaran和Pruss5红利5.1测度与效用5.2正则性和一致性5.3可信度和偶然性5.4条件概率6一般考虑6.1非唯一性6.2不变性附录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信