Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries.

Matt Higger, Martha Shenton, Sylvain Bouix
{"title":"Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries.","authors":"Matt Higger, Martha Shenton, Sylvain Bouix","doi":"10.1007/978-3-319-75238-9_9","DOIUrl":null,"url":null,"abstract":"<p><p>Because mild Traumatic Brain Injuries (mTBI) are heterogeneous, classification methods perform outlier detection from a model of healthy tissue. Such a model is challenging to construct. Instead, we utilize region-specific pairwise (person-to-person) comparisons. Each person-region is characterized by a distribution of Fractional Anisotropy and comparisons are made via Median, Mean, Bhattacharya and Kullback-Liebler distances. Additionally, we examine an ordinal decision rule which compares a subject's n<sup>th</sup> most atypical region to a healthy control's. Ordinal comparison is motivated by mTBI's heterogeneity; each mTBI has some set of damaged tissue which is not necessarily spatially consistent. These improvements correctly distinguish Persistent Post-Concussive Symptoms in a small dataset but achieve only a .74 AUC in identifying mTBI subjects with milder symptoms. Finally, we perform subject-specific simulations which characterize which injuries are detected and which are missed.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"10670 ","pages":"100-110"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004828/pdf/nihms956808.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-75238-9_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because mild Traumatic Brain Injuries (mTBI) are heterogeneous, classification methods perform outlier detection from a model of healthy tissue. Such a model is challenging to construct. Instead, we utilize region-specific pairwise (person-to-person) comparisons. Each person-region is characterized by a distribution of Fractional Anisotropy and comparisons are made via Median, Mean, Bhattacharya and Kullback-Liebler distances. Additionally, we examine an ordinal decision rule which compares a subject's nth most atypical region to a healthy control's. Ordinal comparison is motivated by mTBI's heterogeneity; each mTBI has some set of damaged tissue which is not necessarily spatially consistent. These improvements correctly distinguish Persistent Post-Concussive Symptoms in a small dataset but achieve only a .74 AUC in identifying mTBI subjects with milder symptoms. Finally, we perform subject-specific simulations which characterize which injuries are detected and which are missed.

Abstract Image

Abstract Image

创伤性脑损伤的成对正序离群点检测。
由于轻度脑外伤(mTBI)是异质性的,因此分类方法需要从健康组织模型中进行离群点检测。构建这样的模型具有挑战性。相反,我们利用特定区域的成对(人与人)比较。每个人-区域都以分数各向异性分布为特征,并通过中位数、平均值、巴塔查里亚距离和库尔贝克-李卜勒距离进行比较。此外,我们还研究了一种顺序决策规则,该规则将受试者的第 n 个最不典型区域与健康对照组的最不典型区域进行比较。序数比较的动机是 mTBI 的异质性;每个 mTBI 都有一些受损组织集,而这些受损组织集在空间上不一定是一致的。这些改进在一个小型数据集中正确区分了持续性撞击后症状,但在识别症状较轻的 mTBI 受试者方面,AUC 值仅为 0.74。最后,我们进行了针对特定受试者的模拟,以确定哪些损伤被检测到,哪些被遗漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信