George R Jackson, Anna G Maione, Mitchell Klausner, Patrick J Hayden
{"title":"Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway <i>In Vitro</i> Human Airway Model.","authors":"George R Jackson, Anna G Maione, Mitchell Klausner, Patrick J Hayden","doi":"10.1089/aivt.2018.0004","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (<i>in vitro</i>) test for determining acute inhalation toxicity using the EpiAirway™ <i>in vitro</i> human airway model as a potential alternative for currently accepted animal tests. <b><i>Materials and Methods:</i></b> The <i>in vitro</i> test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The <i>in vitro</i> toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. <b><i>Results:</i></b> The EpiAirway prediction model identified <i>in vivo</i> rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. <b><i>Conclusions:</i></b> These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.</p>","PeriodicalId":37448,"journal":{"name":"Applied In Vitro Toxicology","volume":"4 2","pages":"149-158"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/aivt.2018.0004","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied In Vitro Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/aivt.2018.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 34
Abstract
Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.
期刊介绍:
Applied In Vitro Toxicology is a peer-reviewed journal providing the latest research on the application of alternative in vitro testing methods for predicting adverse effects in the pharmaceutical, chemical, and personal care industries. This Journal aims to address important issues facing the various chemical industries, including regulatory requirements; the reduction, refinement, and replacement of animal testing; new screening methods; evaluation of new cell and tissue models; and the most appropriate methods for assessing safety and satisfying regulatory demands. The Journal also delivers the latest views and opinions of developers of new models, end users of the models, academic laboratories that are inventing new tools, and regulatory agencies in the United States, Europe, Latin America, Australia and Asia. Applied In Vitro Toxicology is the journal that scientists involved with hazard identification and risk assessment will read to understand how new and existing in vitro methods are applied, and the questions for which these models provide answers. Applied In Vitro Toxicology coverage includes: -Applied in vitro toxicology industry standards -New technologies developed for applied in vitro toxicology -Data acquisition, cleaning, distribution, and best practices -Data protection, privacy, and policy -Business interests from research to product -The changing role of in vitro toxicology -Visualization and design principles of applied in vitro toxicology infrastructures -Physical interfaces and robotics -Opportunities around applied in vitro toxicology