Center-Focusing Multi-task CNN with Injected Features for Classification of Glioma Nuclear Images.

Veda Murthy, Le Hou, Dimitris Samaras, Tahsin M Kurc, Joel H Saltz
{"title":"Center-Focusing Multi-task CNN with Injected Features for Classification of Glioma Nuclear Images.","authors":"Veda Murthy, Le Hou, Dimitris Samaras, Tahsin M Kurc, Joel H Saltz","doi":"10.1109/WACV.2017.98","DOIUrl":null,"url":null,"abstract":"<p><p>Classifying the various shapes and attributes of a glioma cell nucleus is crucial for diagnosis and understanding of the disease. We investigate the automated classification of the nuclear shapes and visual attributes of glioma cells, using Convolutional Neural Networks (CNNs) on pathology images of automatically segmented nuclei. We propose three methods that improve the performance of a previously-developed semi-supervised CNN. First, we propose a method that allows the CNN to focus on the most important part of an image-the image's center containing the nucleus. Second, we inject (concatenate) pre-extracted VGG features into an intermediate layer of our Semi-Supervised CNN so that during training, the CNN can learn a set of additional features. Third, we separate the losses of the two groups of target classes (nuclear shapes and attributes) into a single-label loss and a multi-label loss in order to incorporate prior knowledge of inter-label exclusiveness. On a dataset of 2078 images, the combination of the proposed methods reduces the error rate of attribute and shape classification by 21.54% and 15.07% respectively compared to the existing state-of-the-art method on the same dataset.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"2017 ","pages":"834-841"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988234/pdf/nihms969223.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2017.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying the various shapes and attributes of a glioma cell nucleus is crucial for diagnosis and understanding of the disease. We investigate the automated classification of the nuclear shapes and visual attributes of glioma cells, using Convolutional Neural Networks (CNNs) on pathology images of automatically segmented nuclei. We propose three methods that improve the performance of a previously-developed semi-supervised CNN. First, we propose a method that allows the CNN to focus on the most important part of an image-the image's center containing the nucleus. Second, we inject (concatenate) pre-extracted VGG features into an intermediate layer of our Semi-Supervised CNN so that during training, the CNN can learn a set of additional features. Third, we separate the losses of the two groups of target classes (nuclear shapes and attributes) into a single-label loss and a multi-label loss in order to incorporate prior knowledge of inter-label exclusiveness. On a dataset of 2078 images, the combination of the proposed methods reduces the error rate of attribute and shape classification by 21.54% and 15.07% respectively compared to the existing state-of-the-art method on the same dataset.

Abstract Image

Abstract Image

利用注入特征的中心聚焦多任务 CNN 对胶质瘤核图像进行分类
对胶质瘤细胞核的各种形状和属性进行分类对于诊断和了解该疾病至关重要。我们研究了使用卷积神经网络(CNN)对病理图像中自动分割的胶质瘤细胞核形状和视觉属性进行自动分类。我们提出了三种方法来提高之前开发的半监督 CNN 的性能。首先,我们提出了一种方法,让 CNN 专注于图像中最重要的部分--包含细胞核的图像中心。其次,我们将预先提取的 VGG 特征注入(串联)到半监督 CNN 的中间层,这样 CNN 就能在训练过程中学习一组额外的特征。第三,我们将两组目标类别(核形状和属性)的损失分为单标签损失和多标签损失,以纳入标签间排他性的先验知识。在一个包含 2078 幅图像的数据集上,与相同数据集上现有的最先进方法相比,结合使用所提出的方法,属性和形状分类的错误率分别降低了 21.54% 和 15.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信