{"title":"Investigating the Correlation-Firing Rate Relationship in Heterogeneous Recurrent Networks.","authors":"Andrea K Barreiro, Cheng Ly","doi":"10.1186/s13408-018-0063-y","DOIUrl":null,"url":null,"abstract":"<p><p>The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-018-0063-y","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-018-0063-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 9
Abstract
The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.