Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting.

Katie Steele, Charlotte Werndl
{"title":"Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting.","authors":"Katie Steele,&nbsp;Charlotte Werndl","doi":"10.1093/bjps/axw024","DOIUrl":null,"url":null,"abstract":"<p><p>This article argues that common intuitions regarding (a) the specialness of 'use-novel' data for confirmation and (b) that this specialness implies the 'no-double-counting rule', which says that data used in 'constructing' (calibrating) a model cannot also play a role in confirming the model's predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of confirmation of model predictions. We show that on the Bayesian account of confirmation, and also on the standard classical hypothesis-testing account, claims (a) and (b) are not generally true; but for some select cases, it is possible to distinguish data used for calibration from use-novel data, where only the latter confirm. The more specialized classical model-selection methods, on the other hand, uphold a nuanced version of claim (a), but this comes apart from (b), which must be rejected in favour of a more refined account of the relationship between calibration and confirmation. Thus, depending on the framework of confirmation, either the scope or the simplicity of the intuitive position must be revised. <b>1</b> <i>Introduction</i><b>2</b> <i>A Climate Case Study</i><b>3</b> <i>The Bayesian Method vis-à-vis Intuitions</i><b>4</b> <i>Classical Tests vis-à-vis Intuitions</i><b>5</b> <i>Classical Model-Selection Methods vis-à-vis Intuitions</i>  <b>5.1</b> <i>Introducing classical model-selection methods</i>  <b>5.2</b> <i>Two cases</i><b>6</b> <i>Re-examining Our Case Study</i><b>7</b> <i>Conclusion</i>.</p>","PeriodicalId":509962,"journal":{"name":"The British Journal for the Philosophy of Science","volume":"69 2","pages":"351-375"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/bjps/axw024","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Journal for the Philosophy of Science","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/bjps/axw024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/8/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This article argues that common intuitions regarding (a) the specialness of 'use-novel' data for confirmation and (b) that this specialness implies the 'no-double-counting rule', which says that data used in 'constructing' (calibrating) a model cannot also play a role in confirming the model's predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of confirmation of model predictions. We show that on the Bayesian account of confirmation, and also on the standard classical hypothesis-testing account, claims (a) and (b) are not generally true; but for some select cases, it is possible to distinguish data used for calibration from use-novel data, where only the latter confirm. The more specialized classical model-selection methods, on the other hand, uphold a nuanced version of claim (a), but this comes apart from (b), which must be rejected in favour of a more refined account of the relationship between calibration and confirmation. Thus, depending on the framework of confirmation, either the scope or the simplicity of the intuitive position must be revised. 1Introduction2A Climate Case Study3The Bayesian Method vis-à-vis Intuitions4Classical Tests vis-à-vis Intuitions5Classical Model-Selection Methods vis-à-vis Intuitions  5.1Introducing classical model-selection methods  5.2Two cases6Re-examining Our Case Study7Conclusion.

模式选择理论:对使用新颖性和重复计算的更细致图景的需要。
本文认为,关于(a)“使用新颖”数据进行确认的特殊性和(b)这种特殊性意味着“不重复计算规则”(即用于“构建”(校准)模型的数据不能在确认模型预测中发挥作用)的常见直觉过于粗糙。问题中的直觉与所有科学都相关,但我们呼吁气候科学的案例研究来说明什么是利害攸关的。我们的策略是根据对模型预测的确认的突出描述来分析直觉主张。我们表明,根据贝叶斯确认的说法,以及标准的经典假设检验的说法,主张(a)和(b)并不普遍正确;但在某些特定情况下,可以将用于校准的数据与使用新颖的数据区分开来,只有后者可以证实。另一方面,更专业的经典模型选择方法支持声明(a)的微妙版本,但这与(b)分开,必须拒绝(b),以支持对校准和确认之间关系的更精细的描述。因此,根据确认的框架,必须修改直觉立场的范围或简单性。1引言2气候案例研究3贝叶斯方法与-à-vis直觉4经典测试与-à-vis直觉5经典模型选择方法与-à-vis直觉5.1经典模型选择方法介绍5.2两个案例6重新审视我们的案例研究7结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信