The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Advances in Microbial Physiology Pub Date : 2018-01-01 Epub Date: 2018-02-28 DOI:10.1016/bs.ampbs.2018.01.004
Rajalaksmy A Ramachandran, Christopher Lupfer, Hasan Zaki
{"title":"The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence.","authors":"Rajalaksmy A Ramachandran,&nbsp;Christopher Lupfer,&nbsp;Hasan Zaki","doi":"10.1016/bs.ampbs.2018.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":"72 ","pages":"65-115"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2018.01.004","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2018.01.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18

Abstract

Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.

炎性小体:一氧化氮和抗微生物宿主防御的调控。
一氧化氮(NO)是一种气体信号分子,具有多种生理功能,包括抗微生物宿主防御。在微生物感染过程中,NO由诱导型NO合成酶(iNOS)合成,由宿主免疫细胞通过识别微生物模式分子表达。因此,通过位于细胞表面、内体和吞噬体室或细胞质中的模式识别受体(PRRs)感知病原体或其模式分子是诱导iNOS和引发抗微生物宿主防御的关键。一组胞质PRRs通过形成称为炎性体的分子复合物参与诱导NO和其他抗菌分子。组装的炎性小体激活炎性caspase,如caspase-1和caspase-11, caspase-1和caspase-11反过来将促炎细胞因子IL-1β和IL-18加工成成熟形式并诱导热亡细胞死亡。IL-1β和IL-18通过激活和募集免疫细胞、诱导炎症分子和调节抗微生物介质(包括NO),在抗微生物感染的免疫中发挥核心作用。有趣的是,一氧化氮还能以自分泌和旁分泌的方式调节炎性体的活性。在这里,我们讨论炎症小体形成的分子机制和炎症小体介导的微生物感染期间宿主防御反应的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信