Enhancing P300-BCI performance using latency estimation.

IF 1.8 Q3 ENGINEERING, BIOMEDICAL
Brain-Computer Interfaces Pub Date : 2017-01-01 Epub Date: 2017-06-28 DOI:10.1080/2326263X.2017.1338010
Md Rakibul Mowla, Jane E Huggins, David E Thompson
{"title":"Enhancing P300-BCI performance using latency estimation.","authors":"Md Rakibul Mowla,&nbsp;Jane E Huggins,&nbsp;David E Thompson","doi":"10.1080/2326263X.2017.1338010","DOIUrl":null,"url":null,"abstract":"<p><p>Brain Computer Interfaces (BCIs) offer restoration of communication to those with the most severe movement impairments, but performance is not yet ideal. Previous work has demonstrated that latency jitter, the variation in timing of the brain responses, plays a critical role in determining BCI performance. In this study, we used Classifier-Based Latency Estimation (CBLE) and a wavelet transform to provide information about latency jitter to a second-level classifier. Three second-level classifiers were tested: least squares (LS), step-wise linear discriminant analysis (SWLDA), and support vector machine (SVM). Of these three, LS and SWLDA performed better than the original online classifier. The resulting combination demonstrated improved detection of brain responses for many participants, resulting in better BCI performance. Interestingly, the performance gain was greatest for those individuals for whom the BCI did not work well online, indicating that this method may be most suitable for improving performance of otherwise marginal participants.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":"4 3","pages":"137-145"},"PeriodicalIF":1.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2017.1338010","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2017.1338010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 18

Abstract

Brain Computer Interfaces (BCIs) offer restoration of communication to those with the most severe movement impairments, but performance is not yet ideal. Previous work has demonstrated that latency jitter, the variation in timing of the brain responses, plays a critical role in determining BCI performance. In this study, we used Classifier-Based Latency Estimation (CBLE) and a wavelet transform to provide information about latency jitter to a second-level classifier. Three second-level classifiers were tested: least squares (LS), step-wise linear discriminant analysis (SWLDA), and support vector machine (SVM). Of these three, LS and SWLDA performed better than the original online classifier. The resulting combination demonstrated improved detection of brain responses for many participants, resulting in better BCI performance. Interestingly, the performance gain was greatest for those individuals for whom the BCI did not work well online, indicating that this method may be most suitable for improving performance of otherwise marginal participants.

Abstract Image

Abstract Image

使用延迟估计增强P300-BCI性能。
脑机接口(bci)为那些有最严重运动障碍的人提供了恢复沟通的机会,但性能还不理想。先前的工作已经证明,延迟抖动,即大脑反应时间的变化,在决定脑机接口性能方面起着关键作用。在本研究中,我们使用基于分类器的延迟估计(CBLE)和小波变换向二级分类器提供延迟抖动信息。测试了三种二级分类器:最小二乘(LS)、逐步线性判别分析(SWLDA)和支持向量机(SVM)。在这三种分类器中,LS和SWLDA比原始的在线分类器表现更好。结果表明,对许多参与者来说,这种组合改善了对大脑反应的检测,从而提高了脑机接口的性能。有趣的是,那些脑机接口在网上不能很好地工作的人的表现提高是最大的,这表明这种方法可能最适合于提高其他边缘参与者的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
9.50%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信