{"title":"Review of Fluoride Intake and Appropriateness of Current Guidelines.","authors":"M A R Buzalaf","doi":"10.1177/0022034517750850","DOIUrl":null,"url":null,"abstract":"<p><p>Since the classical epidemiological studies by Dean, it has been known that there should be an optimum level of exposure to fluoride that would be able to provide the maximum protection against caries, with minimum dental fluorosis. The \"optimal\" daily intake of fluoride for children (0.05-0.07 mg per kilogram bodyweight) that is still accepted worldwide was empirically determined. In the present review, we discuss the appropriateness of the current guidance for fluoride intake, in light of the windows of susceptibility to caries and fluorosis, the modern trends of fluoride intake from multiple sources, individual variations in fluoride metabolism, and recent epidemiological data. The main conclusion is that it is very difficult to think about a strict recommendation for an \"optimal\" range of fluoride intake at the individual level in light of existing knowledge of 1) the mechanisms of action of fluoride to control caries, 2) the mechanisms involved in dental fluorosis development, 3) the distinct factors that interfere in the metabolism of fluoride, and 4) the windows of susceptibility to both dental caries and fluorosis development. An \"optimal\" range of fluoride intake is, however, desirable at the population level to guide programs of community fluoridation, but further research is necessary to provide additional support for future decisions on guidance in this area. This list includes the effect of factors affecting fluoride metabolism, clinical trials on the effectiveness of low-fluoride dentifrices to prevent caries in the primary dentition, and validation of biomarkers of exposure to fluoride.</p>","PeriodicalId":7300,"journal":{"name":"Advances in Dental Research","volume":"29 2","pages":"157-166"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0022034517750850","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0022034517750850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 58
Abstract
Since the classical epidemiological studies by Dean, it has been known that there should be an optimum level of exposure to fluoride that would be able to provide the maximum protection against caries, with minimum dental fluorosis. The "optimal" daily intake of fluoride for children (0.05-0.07 mg per kilogram bodyweight) that is still accepted worldwide was empirically determined. In the present review, we discuss the appropriateness of the current guidance for fluoride intake, in light of the windows of susceptibility to caries and fluorosis, the modern trends of fluoride intake from multiple sources, individual variations in fluoride metabolism, and recent epidemiological data. The main conclusion is that it is very difficult to think about a strict recommendation for an "optimal" range of fluoride intake at the individual level in light of existing knowledge of 1) the mechanisms of action of fluoride to control caries, 2) the mechanisms involved in dental fluorosis development, 3) the distinct factors that interfere in the metabolism of fluoride, and 4) the windows of susceptibility to both dental caries and fluorosis development. An "optimal" range of fluoride intake is, however, desirable at the population level to guide programs of community fluoridation, but further research is necessary to provide additional support for future decisions on guidance in this area. This list includes the effect of factors affecting fluoride metabolism, clinical trials on the effectiveness of low-fluoride dentifrices to prevent caries in the primary dentition, and validation of biomarkers of exposure to fluoride.