Liver and Metformin: Lessons of a fructose diet in mice

Iara Karise , Fernanda Ornellas , Sandra Barbosa-da-Silva , Cristiane Matsuura , Mariano del Sol , Marcia Barbosa Aguila , Carlos A. Mandarim-de-Lacerda
{"title":"Liver and Metformin: Lessons of a fructose diet in mice","authors":"Iara Karise ,&nbsp;Fernanda Ornellas ,&nbsp;Sandra Barbosa-da-Silva ,&nbsp;Cristiane Matsuura ,&nbsp;Mariano del Sol ,&nbsp;Marcia Barbosa Aguila ,&nbsp;Carlos A. Mandarim-de-Lacerda","doi":"10.1016/j.biopen.2017.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with <em>de novo</em> lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced <em>de novo</em> lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases <em>de novo</em> lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states.</p></div>","PeriodicalId":92004,"journal":{"name":"Biochimie open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biopen.2017.01.002","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214008516300165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with de novo lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced de novo lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases de novo lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states.

Abstract Image

Abstract Image

Abstract Image

肝脏和二甲双胍:小鼠果糖饮食的教训
研究表明,持续摄入果糖可导致非酒精性脂肪性肝病(NAFLD)和脂肪性肝炎。我们的目的是研究二甲双胍在果糖摄入引起的肝损伤动物模型中的作用,重点关注脂肪生成、β -氧化和抗氧化防御的分子标记。雄性3月龄C57BL/6小鼠分为对照组(C)和果糖组(F, 47%果糖),维持10周。之后,各组再给予二甲双胍或载体治疗8周:对照组(C)、对照组+二甲双胍(CM)、果糖(F)和果糖+二甲双胍(FM)。果糖导致肝脏脂肪变性、胰岛素抵抗和胰岛素敏感性降低,这与与新生脂肪生成和脂质过氧化相关的蛋白质mRNA水平升高有关。果糖降低了抗氧化酶和线粒体生物发生蛋白的mRNA表达。二甲双胍减少了新生脂肪生成,增加了与线粒体生物生成相关的蛋白质的表达,从而增加了β -氧化,减少了脂质过氧化。此外,二甲双胍上调了抗氧化酶的表达和活性,为增加活性氧的产生提供了防御。因此,观察到鱼油组肝脏中甘油三酯积累、脂肪变性和脂质过氧化的显著减少。总之,果糖增加了新生脂肪生成,降低了抗氧化防御,减少了线粒体的生物生成。在长时间摄入果糖后,二甲双胍治疗,即使继续摄入果糖,也可以至少部分逆转肝损伤,并防止NAFLD发展到更严重的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信