Shu Yao Leong, Moé Yamada, Naoki Yanagisawa, Gohta Goshima
{"title":"SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens.","authors":"Shu Yao Leong, Moé Yamada, Naoki Yanagisawa, Gohta Goshima","doi":"10.1247/csf.18001","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilisation of minus ends of microtubules (MTs) is critical for organising MT networks in land plant cells, in which all MTs are nucleated independent of centrosomes. Recently, Arabidopsis SPIRAL2 (SPR2) protein was shown to localise to plus and minus ends of cortical MTs, and increase stability of both ends. Here, we report molecular and functional characterisation of SPR2 of the basal land plant, the moss Physcomitrella patens. In protonemal cells of P. patens, where non-cortical, endoplasmic MT network is organised, we observed SPR2 at minus ends, but not plus ends, of endoplasmic MTs and likely also of phragmoplast MTs. Minus end decoration was reconstituted in vitro using purified SPR2, suggesting that moss SPR2 is a minus end-specific binding protein (-TIP). We generated a loss-of-function mutant of SPR2, in which frameshift-causing deletions/insertions were introduced into all four paralogous SPR2 genes by means of CRISPR/Cas9. Protonemal cells of the mutant showed instability of endoplasmic MT minus ends. These results indicate that moss SPR2 is a MT minus end stabilising factor.Key words: acentrosomal microtubule network, microtubule minus end, P. patens, CAMSAP/Nezha/Patronin.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"43 1","pages":"53-60"},"PeriodicalIF":2.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.18001","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.18001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 27
Abstract
Stabilisation of minus ends of microtubules (MTs) is critical for organising MT networks in land plant cells, in which all MTs are nucleated independent of centrosomes. Recently, Arabidopsis SPIRAL2 (SPR2) protein was shown to localise to plus and minus ends of cortical MTs, and increase stability of both ends. Here, we report molecular and functional characterisation of SPR2 of the basal land plant, the moss Physcomitrella patens. In protonemal cells of P. patens, where non-cortical, endoplasmic MT network is organised, we observed SPR2 at minus ends, but not plus ends, of endoplasmic MTs and likely also of phragmoplast MTs. Minus end decoration was reconstituted in vitro using purified SPR2, suggesting that moss SPR2 is a minus end-specific binding protein (-TIP). We generated a loss-of-function mutant of SPR2, in which frameshift-causing deletions/insertions were introduced into all four paralogous SPR2 genes by means of CRISPR/Cas9. Protonemal cells of the mutant showed instability of endoplasmic MT minus ends. These results indicate that moss SPR2 is a MT minus end stabilising factor.Key words: acentrosomal microtubule network, microtubule minus end, P. patens, CAMSAP/Nezha/Patronin.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.