Xiuling Fu, Fangfang He, Yuhao Li, Allahverdi Shahveranov, Andrew Paul Hutchins
{"title":"Genomic and molecular control of cell type and cell type conversions","authors":"Xiuling Fu, Fangfang He, Yuhao Li, Allahverdi Shahveranov, Andrew Paul Hutchins","doi":"10.1016/j.cr.2017.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Organisms are made of a limited number of cell types that combine to form higher order tissues and organs. Cell types have traditionally been defined by their morphologies or biological activity, yet the underlying molecular controls of cell type remain unclear. The onset of single cell technologies, and more recently genomics (particularly single cell genomics), has substantially increased the understanding of the concept of cell type, but has also increased the complexity of this understanding. These new technologies have added a new genome wide molecular dimension to the description of cell type, with genome-wide expression and epigenetic data acting as a cell type ‘fingerprint’ to describe the cell state. Using these genomic fingerprints cell types are being increasingly defined based on specific genomic and molecular criteria, without necessarily a distinct biological function. In this review, we will discuss the molecular definitions of cell types and cell type control, and particularly how endogenous and exogenous transcription factors can control cell types and cell type conversions.</p></div>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"6 ","pages":"Pages 1-7"},"PeriodicalIF":4.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cr.2017.09.001","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2045976917300512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 14
Abstract
Organisms are made of a limited number of cell types that combine to form higher order tissues and organs. Cell types have traditionally been defined by their morphologies or biological activity, yet the underlying molecular controls of cell type remain unclear. The onset of single cell technologies, and more recently genomics (particularly single cell genomics), has substantially increased the understanding of the concept of cell type, but has also increased the complexity of this understanding. These new technologies have added a new genome wide molecular dimension to the description of cell type, with genome-wide expression and epigenetic data acting as a cell type ‘fingerprint’ to describe the cell state. Using these genomic fingerprints cell types are being increasingly defined based on specific genomic and molecular criteria, without necessarily a distinct biological function. In this review, we will discuss the molecular definitions of cell types and cell type control, and particularly how endogenous and exogenous transcription factors can control cell types and cell type conversions.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine