{"title":"Saliency-Based Bleeding Localization for Wireless Capsule Endoscopy Diagnosis.","authors":"Hongda Chen, Shaoze Wang, Yong Ding, Dahong Qian","doi":"10.1155/2017/8147632","DOIUrl":null,"url":null,"abstract":"<p><p>Stomach bleeding is a kind of gastrointestinal disease which can be diagnosed noninvasively by wireless capsule endoscopy (WCE). However, it requires much time for physicians to scan large amount of WCE images. Alternatively, computer-assisted bleeding localization systems are developed where color, edge, and intensity features are defined to distinguish lesions from normal tissues. This paper proposes a saliency-based localization system where three saliency maps are computed: phase congruency-based edge saliency map derived from Log-Gabor filter bands, intensity histogram-guided intensity saliency map, and red proportion-based saliency map. Fusing the three maps together, the proposed system can detect bleeding regions by thresholding the fused saliency map. Results demonstrate the accuracy of 98.97% for our system to mark bleeding regions.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/8147632","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/8147632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Stomach bleeding is a kind of gastrointestinal disease which can be diagnosed noninvasively by wireless capsule endoscopy (WCE). However, it requires much time for physicians to scan large amount of WCE images. Alternatively, computer-assisted bleeding localization systems are developed where color, edge, and intensity features are defined to distinguish lesions from normal tissues. This paper proposes a saliency-based localization system where three saliency maps are computed: phase congruency-based edge saliency map derived from Log-Gabor filter bands, intensity histogram-guided intensity saliency map, and red proportion-based saliency map. Fusing the three maps together, the proposed system can detect bleeding regions by thresholding the fused saliency map. Results demonstrate the accuracy of 98.97% for our system to mark bleeding regions.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics