Yuantao Wei, Yuchuan Shi, Ye Chen, Chunhui Xiao and Shujiang Ding
{"title":"Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies","authors":"Yuantao Wei, Yuchuan Shi, Ye Chen, Chunhui Xiao and Shujiang Ding","doi":"10.1039/D0TA11068J","DOIUrl":null,"url":null,"abstract":"<p >Aqueous-based Zn–air and Al–air batteries are considered to be promising post-lithium energy storage technologies owing to their safety, environmental friendliness, affordability, and high energy density. Nevertheless, traditional liquid Zn–air and Al–air batteries have problems such as volatilization and leakage, as well as the realization of miniaturized, portable, and wearable electronic devices. The practice of optimizing the battery structure by replacing the flowing electrolyte with a solid type has emerged and made significant progress in the past ten years. Herein, this review provides a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn–air and Al–air batteries. First, two types of alkaline solid electrolytes are distinguished, including alkaline anion exchange membranes (AAEMs) and gel polymer electrolytes (GPEs). Then, three sorts of major framework materials (<em>i.e.</em>, artificial organic polymer, biomass materials, and inorganic materials) are reviewed and discussed. Most importantly, the latest research progress and improvement strategies to enhance the electrolyte membrane performances involving conductivity, mechanical properties, and electrochemical stability are also highlighted. Finally, challenges and prospects for the future development of alkaline solid electrolytes are emphasized.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 8","pages":" 4415-4453"},"PeriodicalIF":10.7000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0TA11068J","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta11068j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 27
Abstract
Aqueous-based Zn–air and Al–air batteries are considered to be promising post-lithium energy storage technologies owing to their safety, environmental friendliness, affordability, and high energy density. Nevertheless, traditional liquid Zn–air and Al–air batteries have problems such as volatilization and leakage, as well as the realization of miniaturized, portable, and wearable electronic devices. The practice of optimizing the battery structure by replacing the flowing electrolyte with a solid type has emerged and made significant progress in the past ten years. Herein, this review provides a guiding and comprehensive summary of the basic understanding and manufacturing ideas of the solid electrolyte for Zn–air and Al–air batteries. First, two types of alkaline solid electrolytes are distinguished, including alkaline anion exchange membranes (AAEMs) and gel polymer electrolytes (GPEs). Then, three sorts of major framework materials (i.e., artificial organic polymer, biomass materials, and inorganic materials) are reviewed and discussed. Most importantly, the latest research progress and improvement strategies to enhance the electrolyte membrane performances involving conductivity, mechanical properties, and electrochemical stability are also highlighted. Finally, challenges and prospects for the future development of alkaline solid electrolytes are emphasized.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.