{"title":"Ral function in muscle is required for flight maintenance in <i>Drosophila</i>.","authors":"Shlesha Richhariya, Gaiti Hasan","doi":"10.1080/21541248.2017.1367456","DOIUrl":null,"url":null,"abstract":"<p><p>Ral is a small GTPase of the Ras superfamily that is important for a number of cellular functions. Recently, we found that expression of Ral is regulated by store-operated calcium entry (SOCE) in <i>Drosophila</i> neurons. In this study, through genetic and behavioural experiments, we show that Ral function is required in differentiated muscles for flight. Reducing Ral function in muscles, specifically reduced duration of flight bouts but not other motor functions, like climbing. Interestingly, unlike in the nervous system, Ral expression in the muscle is not regulated by SOCE. Moreover, either knockdown or genetic inhibition of SOCE in muscles does not affect flight. These findings demonstrate that a multiplicity of signalling mechanisms very likely regulate Ral expression in different tissues.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"11 3","pages":"174-179"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2017.1367456","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2017.1367456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Ral is a small GTPase of the Ras superfamily that is important for a number of cellular functions. Recently, we found that expression of Ral is regulated by store-operated calcium entry (SOCE) in Drosophila neurons. In this study, through genetic and behavioural experiments, we show that Ral function is required in differentiated muscles for flight. Reducing Ral function in muscles, specifically reduced duration of flight bouts but not other motor functions, like climbing. Interestingly, unlike in the nervous system, Ral expression in the muscle is not regulated by SOCE. Moreover, either knockdown or genetic inhibition of SOCE in muscles does not affect flight. These findings demonstrate that a multiplicity of signalling mechanisms very likely regulate Ral expression in different tissues.