{"title":"Alagille syndrome: Genetics and Functional Models.","authors":"Melissa A Gilbert, Nancy B Spinner","doi":"10.1007/s40139-017-0144-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>We review the genetics of the autosomal dominant, multi-system disorder, Alagille syndrome and provide a summary on how current functional models and emerging biotechnologies are equipped to guide scientists towards novel therapies. The importance of haploinsufficiency as a disease mechanism will be underscored throughout this discussion.</p><p><strong>Recent findings: </strong>Alagille syndrome, a human disorder affecting the liver, heart, vasculature, kidney, and other systems, is caused by mutations in the Notch signaling pathway ligand, Jagged1 (<i>JAG1</i>) or the receptor, <i>NOTCH2</i>. Current advances in animal modeling, <i>in vitro</i> cell culture, and human induced pluripotent stem cells, provide new opportunities in which to study disease mechanisms and manifestations.</p><p><strong>Summary: </strong>We anticipate that the availability of innovative functional models will allow scientists to test new gene therapies or small molecule treatments in physiologically-relevant systems. With these advances, we look forward to the development of new methods to help Alagille syndrome patients.</p>","PeriodicalId":37014,"journal":{"name":"Current Pathobiology Reports","volume":"5 3","pages":"233-241"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40139-017-0144-8","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pathobiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40139-017-0144-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 25
Abstract
Purpose of review: We review the genetics of the autosomal dominant, multi-system disorder, Alagille syndrome and provide a summary on how current functional models and emerging biotechnologies are equipped to guide scientists towards novel therapies. The importance of haploinsufficiency as a disease mechanism will be underscored throughout this discussion.
Recent findings: Alagille syndrome, a human disorder affecting the liver, heart, vasculature, kidney, and other systems, is caused by mutations in the Notch signaling pathway ligand, Jagged1 (JAG1) or the receptor, NOTCH2. Current advances in animal modeling, in vitro cell culture, and human induced pluripotent stem cells, provide new opportunities in which to study disease mechanisms and manifestations.
Summary: We anticipate that the availability of innovative functional models will allow scientists to test new gene therapies or small molecule treatments in physiologically-relevant systems. With these advances, we look forward to the development of new methods to help Alagille syndrome patients.
期刊介绍:
This journal aims to offer expert review articles on the most important recent research pertaining to biological mechanisms underlying disease, including etiology, pathogenesis, and the clinical manifestations of cellular alteration. By providing clear, insightful, balanced contributions, the journal intends to serve those for whom the elucidation of new techniques and technologies related to pathobiology is essential. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas across the field. Section Editors select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An Editorial Board of more than 20 internationally diverse members reviews the annual table of contents, ensures that topics include emerging research, and suggests topics of special importance to their country/region. Topics covered may include autophagy, cancer stem cells, induced pluripotential stem cells (iPS cells), inflammation and cancer, matrix pathobiology, miRNA in pathobiology, mitochondrial dysfunction/diseases, and myofibroblast.