Probabilistic Simulation Framework for EEG-Based BCI Design.

IF 1.8 Q3 ENGINEERING, BIOMEDICAL
Brain-Computer Interfaces Pub Date : 2016-01-01 Epub Date: 2016-12-05 DOI:10.1080/2326263X.2016.1252621
Umut Orhan, Hooman Nezamfar, Murat Akcakaya, Deniz Erdogmus, Matt Higger, Mohammad Moghadamfalahi, Andrew Fowler, Brian Roark, Barry Oken, Melanie Fried-Oken
{"title":"Probabilistic Simulation Framework for EEG-Based BCI Design.","authors":"Umut Orhan,&nbsp;Hooman Nezamfar,&nbsp;Murat Akcakaya,&nbsp;Deniz Erdogmus,&nbsp;Matt Higger,&nbsp;Mohammad Moghadamfalahi,&nbsp;Andrew Fowler,&nbsp;Brian Roark,&nbsp;Barry Oken,&nbsp;Melanie Fried-Oken","doi":"10.1080/2326263X.2016.1252621","DOIUrl":null,"url":null,"abstract":"<p><p>A simulation framework could decrease the burden of attending long and tiring experimental sessions on the potential users of brain computer interface (BCI) systems. Specifically during the initial design of a BCI, a simulation framework that could replicate the operational performance of the system would be a useful tool for designers to make design choices. In this manuscript, we develop a Monte Carlo based probabilistic simulation framework for electroencephalography (EEG) based BCI design. We employ one event related potential (ERP) based typing and one steady state evoked potential (SSVEP) based control interface as testbeds. We compare the results of simulations with real time experiments. Even though over and under estimation of the performance is possible, the statistical results over the Monte Carlo simulations show that the developed framework generally provides a good approximation of the real time system performance.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":"3 4","pages":"171-185"},"PeriodicalIF":1.8000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2016.1252621","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2016.1252621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12

Abstract

A simulation framework could decrease the burden of attending long and tiring experimental sessions on the potential users of brain computer interface (BCI) systems. Specifically during the initial design of a BCI, a simulation framework that could replicate the operational performance of the system would be a useful tool for designers to make design choices. In this manuscript, we develop a Monte Carlo based probabilistic simulation framework for electroencephalography (EEG) based BCI design. We employ one event related potential (ERP) based typing and one steady state evoked potential (SSVEP) based control interface as testbeds. We compare the results of simulations with real time experiments. Even though over and under estimation of the performance is possible, the statistical results over the Monte Carlo simulations show that the developed framework generally provides a good approximation of the real time system performance.

Abstract Image

Abstract Image

Abstract Image

基于脑电图的脑机接口设计的概率仿真框架。
模拟框架可以减轻脑机接口(BCI)系统潜在用户参加长时间和疲劳实验的负担。特别是在BCI的初始设计阶段,可以复制系统运行性能的模拟框架将是设计人员做出设计选择的有用工具。在本文中,我们开发了一个基于蒙特卡罗的基于脑电图(EEG)的BCI设计的概率模拟框架。我们采用一个基于事件相关电位(ERP)的分型和一个基于稳态诱发电位(SSVEP)的控制接口作为测试平台。我们将仿真结果与实时实验结果进行了比较。尽管对性能的估计可能过高或过低,但蒙特卡罗模拟的统计结果表明,所开发的框架通常提供了实时系统性能的良好近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
9.50%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信