Francisco Gallardo-Vera, Miguel Tapia-Rodriguez, Daniel Diaz, Teresa Fortoul van der Goes, Luis F Montaño, Erika P Rendón-Huerta
{"title":"Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways.","authors":"Francisco Gallardo-Vera, Miguel Tapia-Rodriguez, Daniel Diaz, Teresa Fortoul van der Goes, Luis F Montaño, Erika P Rendón-Huerta","doi":"10.1080/1547691X.2017.1404662","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium is an air pollutant that imparts immunosuppressive effects on NK cell immune responses, in part, by dysregulating interleukin (IL)-2/IL-2R-mediated JAK signaling pathways and inducing apoptosis. The aim of the present study was to evaluate effects of vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) on other IL-2 receptor-mediated signaling pathways, i.e. PI3K-AKT-mTOR and Ras-MAPK. Here, IL-2-independent NK-92MI cells were exposed to different V<sub>2</sub>O<sub>5</sub> doses for 24 h periods. Expression of PI3K, Akt, mTOR, ERK1/2, MEK1, PTEN, SHP1, BAD and phosphorylated forms, as well as caspases-3, -8, -9, BAX and BAK in/on the cells were then determined by flow cytometry. The results show that V<sub>2</sub>O<sub>5</sub> was cytotoxic to NK cells in a dose-related manner. Exposure increased BAD and pBAD expression and decreased that of BAK and BAX, but cell death was not related to caspase activation. At 400 µM V<sub>2</sub>O<sub>5</sub>, expression of PI3K-p85 regulatory subunit increased 20% and pPI3K 50%, while that of the non-pPI3K 110α catalytic subunit decreased by 20%. At 200 μM, V<sub>2</sub>O<sub>5</sub> showed significant decrease in non-pAkt expression (p < 0.05); the decrease in pAkt expression was significant at 100 μM. Non-pmTOR expression displayed a significant downward trend beginning at 100 μM. Expressions of pMEK-1/2 and pERK-1/2 increased substantially at 200 μM V<sub>2</sub>O<sub>5</sub>. No differences were found with non-phosphorylated ERK-1/2. PTEN expression increased significantly at 100 μM V<sub>2</sub>O<sub>5</sub> exposure whereas pPTEN decreased by 18% at 25 μM V<sub>2</sub>O<sub>5</sub> concentrations, but remained unchanged thereafter. Lastly, V<sub>2</sub>O<sub>5</sub> at all doses decreased SHP1 expression and increased expression of its phosphorylated form. These results indicated a toxic effect of V<sub>2</sub>O<sub>5</sub> on NK cells that was due in part to dysregulation of signaling pathways mediated by IL-2 via increased PTEN and decreased SHP1 expression. These results can help to explain some of the known deleterious effects of this particular form of vanadium on innate immune responses<sub>.</sub></p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"15 1","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1404662","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2017.1404662","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 19
Abstract
Vanadium is an air pollutant that imparts immunosuppressive effects on NK cell immune responses, in part, by dysregulating interleukin (IL)-2/IL-2R-mediated JAK signaling pathways and inducing apoptosis. The aim of the present study was to evaluate effects of vanadium pentoxide (V2O5) on other IL-2 receptor-mediated signaling pathways, i.e. PI3K-AKT-mTOR and Ras-MAPK. Here, IL-2-independent NK-92MI cells were exposed to different V2O5 doses for 24 h periods. Expression of PI3K, Akt, mTOR, ERK1/2, MEK1, PTEN, SHP1, BAD and phosphorylated forms, as well as caspases-3, -8, -9, BAX and BAK in/on the cells were then determined by flow cytometry. The results show that V2O5 was cytotoxic to NK cells in a dose-related manner. Exposure increased BAD and pBAD expression and decreased that of BAK and BAX, but cell death was not related to caspase activation. At 400 µM V2O5, expression of PI3K-p85 regulatory subunit increased 20% and pPI3K 50%, while that of the non-pPI3K 110α catalytic subunit decreased by 20%. At 200 μM, V2O5 showed significant decrease in non-pAkt expression (p < 0.05); the decrease in pAkt expression was significant at 100 μM. Non-pmTOR expression displayed a significant downward trend beginning at 100 μM. Expressions of pMEK-1/2 and pERK-1/2 increased substantially at 200 μM V2O5. No differences were found with non-phosphorylated ERK-1/2. PTEN expression increased significantly at 100 μM V2O5 exposure whereas pPTEN decreased by 18% at 25 μM V2O5 concentrations, but remained unchanged thereafter. Lastly, V2O5 at all doses decreased SHP1 expression and increased expression of its phosphorylated form. These results indicated a toxic effect of V2O5 on NK cells that was due in part to dysregulation of signaling pathways mediated by IL-2 via increased PTEN and decreased SHP1 expression. These results can help to explain some of the known deleterious effects of this particular form of vanadium on innate immune responses.
期刊介绍:
The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.