{"title":"Oxidative Stress Induces Disruption of the Axon Initial Segment.","authors":"Kareem Clark, Brooke A Sword, Jeffrey L Dupree","doi":"10.1177/1759091417745426","DOIUrl":null,"url":null,"abstract":"<p><p>The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca<sup>2+</sup>) channels suggests that this mechanism of AIS disruption involves Ca<sup>2+</sup> entry specifically through L-type voltage-dependent Ca<sup>2+</sup> channels and its release from IP<sub>3</sub>-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca<sup>2+</sup>-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"9 6","pages":"1759091417745426"},"PeriodicalIF":3.9000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091417745426","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASN NEURO","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1759091417745426","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 20
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
期刊介绍:
ASN NEURO is an open access, peer-reviewed journal uniquely positioned to provide investigators with the most recent advances across the breadth of the cellular and molecular neurosciences. The official journal of the American Society for Neurochemistry, ASN NEURO is dedicated to the promotion, support, and facilitation of communication among cellular and molecular neuroscientists of all specializations.