William Speier, Nand Chandravadia, Dustin Roberts, S Pendekanti, Nader Pouratian
{"title":"Online BCI Typing using Language Model Classifiers by ALS Patients in their Homes.","authors":"William Speier, Nand Chandravadia, Dustin Roberts, S Pendekanti, Nader Pouratian","doi":"10.1080/2326263X.2016.1252143","DOIUrl":null,"url":null,"abstract":"<p><p>The P300 speller is a common brain-computer interface system that can provide a means of communication for patients with amyotrophic lateral sclerosis (ALS). Recent studies have shown that incorporating language information in signal classification can improve system performance, but they have largely been tested on healthy volunteers in a laboratory setting. The goal of this study was to demonstrate the functionality of the P300 speller system with language models when used by ALS patients in their homes. Six ALS patients with functional ratings ranging from two to 28 participated in this study. All subjects had improved offline performance when using a language model and five subjects were able to type at least six characters per minute with over 84% accuracy in online sessions. The results of this study indicate that the improvements in performance using language models in the P300 speller translate into the ALS population, which could help to make it a viable assistive device.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":"4 1-2","pages":"114-121"},"PeriodicalIF":1.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2016.1252143","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2016.1252143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 21
Abstract
The P300 speller is a common brain-computer interface system that can provide a means of communication for patients with amyotrophic lateral sclerosis (ALS). Recent studies have shown that incorporating language information in signal classification can improve system performance, but they have largely been tested on healthy volunteers in a laboratory setting. The goal of this study was to demonstrate the functionality of the P300 speller system with language models when used by ALS patients in their homes. Six ALS patients with functional ratings ranging from two to 28 participated in this study. All subjects had improved offline performance when using a language model and five subjects were able to type at least six characters per minute with over 84% accuracy in online sessions. The results of this study indicate that the improvements in performance using language models in the P300 speller translate into the ALS population, which could help to make it a viable assistive device.