{"title":"Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga<sub>2</sub>O<sub>3</sub>, and Diamond.","authors":"Peter J Wellmann","doi":"10.1002/zaac.201700270","DOIUrl":null,"url":null,"abstract":"<p><p>Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.</p>","PeriodicalId":54398,"journal":{"name":"Zeitschrift fur Anorganische und Allgemeine Chemie","volume":"643 21","pages":"1312-1322"},"PeriodicalIF":1.1000,"publicationDate":"2017-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/zaac.201700270","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Anorganische und Allgemeine Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/zaac.201700270","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 58
Abstract
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
期刊介绍:
ZAAC is an international scientific journal which publishes original papers on new relevant research results from all areas of inorganic chemistry, solid state chemistry, and co-ordination chemistry.
The contributions reflect the latest findings in these research areas and serve the development of new materials, such as super-hard materials, electrical superconductors, or intermetallic compounds. Up-to-date physical methods for the characterization of new chemical compounds and materials are also described.