{"title":"Cystatin C in Cerebrovascular Disorders.","authors":"Yaru Zhang, Li Sun","doi":"10.2174/1567202614666171116102504","DOIUrl":null,"url":null,"abstract":"<p><p>Cystatin C (CysC), a cysteine protease inhibitor, has been widely proven to be a highly sensitive biomarker to predict the kidney function. The similarity of the renal and cerebral small vessels has awakened a surge of studies suggesting that CysC plays a key role in various cerebrovascular disorders. This review focuses on four major mechanisms of CysC in a variety of cerebrovascular diseases. (1) The property of the CysC Leu-68-Gln (L68Q) variant to aggregate and the property of the wild type CysC protein to co-aggregate with Amyloid-β (Aβ); (2) The disruption of equilibrium between CysC and related cysteine proteases; (3) The function of CysC as an inflammatory inducing factor; (4) The ability of CysC to induce autophagy. The combination of these CysC properties provides a well-supported novel biomarker for cerebrovascular diseases.</p>","PeriodicalId":10879,"journal":{"name":"Current neurovascular research","volume":"14 4","pages":"406-414"},"PeriodicalIF":1.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567202614666171116102504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 16
Abstract
Cystatin C (CysC), a cysteine protease inhibitor, has been widely proven to be a highly sensitive biomarker to predict the kidney function. The similarity of the renal and cerebral small vessels has awakened a surge of studies suggesting that CysC plays a key role in various cerebrovascular disorders. This review focuses on four major mechanisms of CysC in a variety of cerebrovascular diseases. (1) The property of the CysC Leu-68-Gln (L68Q) variant to aggregate and the property of the wild type CysC protein to co-aggregate with Amyloid-β (Aβ); (2) The disruption of equilibrium between CysC and related cysteine proteases; (3) The function of CysC as an inflammatory inducing factor; (4) The ability of CysC to induce autophagy. The combination of these CysC properties provides a well-supported novel biomarker for cerebrovascular diseases.
期刊介绍:
Current Neurovascular Research provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum publishing novel and original work as well as timely neuroscience research articles, full-length/mini reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridges the gap between basic science research and clinical discovery. Current Neurovascular Research emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.