{"title":"Computer-Aided Cobb Measurement Based on Automatic Detection of Vertebral Slopes Using Deep Neural Network.","authors":"Junhua Zhang, Hongjian Li, Liang Lv, Yufeng Zhang","doi":"10.1155/2017/9083916","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a computer-aided method that reduces the variability of Cobb angle measurement for scoliosis assessment.</p><p><strong>Methods: </strong>A deep neural network (DNN) was trained with vertebral patches extracted from spinal model radiographs. The Cobb angle of the spinal curve was calculated automatically from the vertebral slopes predicted by the DNN. Sixty-five in vivo radiographs and 40 model radiographs were analyzed. An experienced surgeon performed manual measurements on the aforementioned radiographs. Two examiners used both the proposed and the manual measurement methods to analyze the aforementioned radiographs.</p><p><strong>Results: </strong>For model radiographs, the intraclass correlation coefficients were greater than 0.98, and the mean absolute differences were less than 3°. This indicates that the proposed system showed high repeatability for measurements of model radiographs. For the in vivo radiographs, the reliabilities were lower than those from the model radiographs, and the differences between the computer-aided measurement and the manual measurement by the surgeon were higher than 5°.</p><p><strong>Conclusion: </strong>The variability of Cobb angle measurements can be reduced if the DNN system is trained with enough vertebral patches. Training data of in vivo radiographs must be included to improve the performance of DNN.</p><p><strong>Significance: </strong>Vertebral slopes can be predicted by DNN. The computer-aided system can be used to perform automatic measurements of Cobb angle, which is used to make reliable and objective assessments of scoliosis.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9083916","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/9083916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 52
Abstract
Objective: To develop a computer-aided method that reduces the variability of Cobb angle measurement for scoliosis assessment.
Methods: A deep neural network (DNN) was trained with vertebral patches extracted from spinal model radiographs. The Cobb angle of the spinal curve was calculated automatically from the vertebral slopes predicted by the DNN. Sixty-five in vivo radiographs and 40 model radiographs were analyzed. An experienced surgeon performed manual measurements on the aforementioned radiographs. Two examiners used both the proposed and the manual measurement methods to analyze the aforementioned radiographs.
Results: For model radiographs, the intraclass correlation coefficients were greater than 0.98, and the mean absolute differences were less than 3°. This indicates that the proposed system showed high repeatability for measurements of model radiographs. For the in vivo radiographs, the reliabilities were lower than those from the model radiographs, and the differences between the computer-aided measurement and the manual measurement by the surgeon were higher than 5°.
Conclusion: The variability of Cobb angle measurements can be reduced if the DNN system is trained with enough vertebral patches. Training data of in vivo radiographs must be included to improve the performance of DNN.
Significance: Vertebral slopes can be predicted by DNN. The computer-aided system can be used to perform automatic measurements of Cobb angle, which is used to make reliable and objective assessments of scoliosis.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics