{"title":"Heterologous Expression of Spinosyn Biosynthetic Gene Cluster in Streptomyces Species Is Dependent on the Expression of Rhamnose Biosynthesis Genes.","authors":"Chen Zhao, Ying Huang, Chao Guo, Bolei Yang, Yan Zhang, Zhou Lan, Xiong Guan, Yuan Song, Xiaolin Zhang","doi":"10.1159/000477543","DOIUrl":null,"url":null,"abstract":"<p><p>Spinosyns are a group of macrolide insecticides produced by Saccharopolyspora spinosa. Although S. spinosa can be used for industrial-scale production of spinosyns, this might suffer from several limitations, mainly related to its long growth cycle, low fermentation biomass, and inefficient utilization of starch. It is crucial to generate a robust strain for further spinosyn production and the development of spinosyn derivatives. A BAC vector, containing the whole biosynthetic gene cluster for spinosyn (74 kb) and the elements required for conjugal transfer and site-specific integration, was introduced into different Streptomyces hosts in order to obtain heterologous spinosyn-producing strains. The exconjugants of different Streptomyces strains did not show spinosyn production unless the rhamnose biosynthesis genes from S. spinosa genomic DNA were present and expressed under the control of a strong constitutive ermE*p promoter. Using this heterologous expression system resulted in yields of 1 μg/mL and 1.5 μg/mL spinosyns in Streptomyces coelicolor and Streptomyces lividans, respectively. This report demonstrates spinosyn production in 2 Streptomyces strains and stresses the essential role of rhamnose in this process. This work also provides a potential alternative route for producing spinosyn analogs by means of genetic manipulation in the heterologous hosts.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000477543","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000477543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 14
Abstract
Spinosyns are a group of macrolide insecticides produced by Saccharopolyspora spinosa. Although S. spinosa can be used for industrial-scale production of spinosyns, this might suffer from several limitations, mainly related to its long growth cycle, low fermentation biomass, and inefficient utilization of starch. It is crucial to generate a robust strain for further spinosyn production and the development of spinosyn derivatives. A BAC vector, containing the whole biosynthetic gene cluster for spinosyn (74 kb) and the elements required for conjugal transfer and site-specific integration, was introduced into different Streptomyces hosts in order to obtain heterologous spinosyn-producing strains. The exconjugants of different Streptomyces strains did not show spinosyn production unless the rhamnose biosynthesis genes from S. spinosa genomic DNA were present and expressed under the control of a strong constitutive ermE*p promoter. Using this heterologous expression system resulted in yields of 1 μg/mL and 1.5 μg/mL spinosyns in Streptomyces coelicolor and Streptomyces lividans, respectively. This report demonstrates spinosyn production in 2 Streptomyces strains and stresses the essential role of rhamnose in this process. This work also provides a potential alternative route for producing spinosyn analogs by means of genetic manipulation in the heterologous hosts.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.