{"title":"Targeting epidermal growth factor receptor co-dependent signaling pathways in glioblastoma.","authors":"Feng Liu, Paul S Mischel","doi":"10.1002/wsbm.1398","DOIUrl":null,"url":null,"abstract":"<p><p>The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that is critical for normal development and function. EGFR is also amplified or mutated in a variety of cancers including in nearly 60% of cases of the highly lethal brain cancer glioblastoma (GBM). EGFR amplification and mutation reprogram cellular metabolism and broadly alter gene transcription to drive tumor formation and progression, rendering EGFR as a compelling drug target. To date, brain tumor patients have yet to benefit from anti-EGFR therapy due in part to an inability to achieve sufficient intratumoral drug levels in the brain, cultivating adaptive mechanisms of resistance. Here, we review an alternative set of strategies for targeting EGFR-amplified GBMs, based on identifying and targeting tumor co-dependencies shaped both by aberrant EGFR signaling and the brain's unique biochemical environment. These approaches may include highly brain-penetrant drugs from non-cancer pipelines, expanding the pharmacopeia and providing promising new treatments. We review the molecular underpinnings of EGFR-activated co-dependencies in the brain and the promising new treatments based on this strategy. WIREs Syst Biol Med 2018, 10:e1398. doi: 10.1002/wsbm.1398 This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"10 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1398","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 18
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that is critical for normal development and function. EGFR is also amplified or mutated in a variety of cancers including in nearly 60% of cases of the highly lethal brain cancer glioblastoma (GBM). EGFR amplification and mutation reprogram cellular metabolism and broadly alter gene transcription to drive tumor formation and progression, rendering EGFR as a compelling drug target. To date, brain tumor patients have yet to benefit from anti-EGFR therapy due in part to an inability to achieve sufficient intratumoral drug levels in the brain, cultivating adaptive mechanisms of resistance. Here, we review an alternative set of strategies for targeting EGFR-amplified GBMs, based on identifying and targeting tumor co-dependencies shaped both by aberrant EGFR signaling and the brain's unique biochemical environment. These approaches may include highly brain-penetrant drugs from non-cancer pipelines, expanding the pharmacopeia and providing promising new treatments. We review the molecular underpinnings of EGFR-activated co-dependencies in the brain and the promising new treatments based on this strategy. WIREs Syst Biol Med 2018, 10:e1398. doi: 10.1002/wsbm.1398 This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine