Abhishek Kumar Singh, Sandeep Singh, Geetika Garg, Syed Ibrahim Rizvi
{"title":"Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats.","authors":"Abhishek Kumar Singh, Sandeep Singh, Geetika Garg, Syed Ibrahim Rizvi","doi":"10.1080/13813455.2017.1359629","DOIUrl":null,"url":null,"abstract":"<p><p>Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca<sup>2+</sup>]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and Ca<sup>2+</sup>-ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na<sup>+</sup>/H<sup>+</sup> exchanger (NHE) activity and levels of [Ca<sup>2+</sup>]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":"124 1","pages":"45-53"},"PeriodicalIF":2.5000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13813455.2017.1359629","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2017.1359629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 17
Abstract
Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca2+]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na+/K+-ATPase (NKA) and Ca2+-ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na+/H+ exchanger (NHE) activity and levels of [Ca2+]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.