Chromatin-remodeling for transcription.

IF 7.2 2区 生物学 Q1 BIOPHYSICS
Yahli Lorch, Roger D Kornberg
{"title":"Chromatin-remodeling for transcription.","authors":"Yahli Lorch,&nbsp;Roger D Kornberg","doi":"10.1017/S003358351700004X","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S003358351700004X","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S003358351700004X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 49

Abstract

The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.

染色质重塑转录。
核小体是一种通用的基因抑制因子,除了由特定的正调控机制引起的转录外,它可以阻止所有的转录起始。积极的机制开始于染色质重构,通过复合物滑动、破坏或以其他方式改变核小体的结构和组织。酵母中的RSC和人类细胞中的PBAF是转录的主要重塑复合物。RSC在基因前面创建一个无核小体区域,两侧是强定位的+1和-1核小体,转录起始位点通常在+1核小体边界内10-15 bp。RSC还稳定地与含有调控元件的核小体和+1核小体结合,以一种部分暴露其DNA序列的方式扰乱其结构。RSC-核小体复合物的低温电子显微镜结构揭示了这种结构扰动,DNA大部分从核小体上解开,可能与RSC带正电的表面相互作用。这种解包裹既暴露了DNA,又通过RSC的atp依赖活性使其在核小体的组蛋白八聚体上易位。遗传学研究揭示了RSC在DNA修复、染色体分离和其他染色体DNA交易中的其他作用。RSC的这些功能可能涉及相同的基本活动,DNA解包裹和DNA易位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信