Yanmei Chen, Yu Fu, Yingjie An, Jun Cao, Jianhong Wang, Jichuan Zhang
{"title":"Interactive effects of morphine and dopamine receptor agonists on spatial recognition memory in mice.","authors":"Yanmei Chen, Yu Fu, Yingjie An, Jun Cao, Jianhong Wang, Jichuan Zhang","doi":"10.1111/1440-1681.12889","DOIUrl":null,"url":null,"abstract":"<p><p>Both opiates and dopamine play important roles in learning and memory. Although synergistic action between these two neurotransmitters has been found, their functional roles remain unclear. Here, low dose morphine (2.5 mg/kg) and low dose dopamine receptor agonists (apomorphine 0.05 mg/kg; SKF38393 0.01 mg/kg; bromocriptine 0.05 mg/kg), which have no effects on spatial recognition memory, were injected intraperitoneally into mice 30 minutes before a memory test in a two-trial recognition Y-maze. The Y-maze is based on the innate tendency of rodents to explore novel environments and is therefore suitable for exploring the effects of morphine on learning and memory. Our results showed that both D1-like and D2-like dopamine receptor agonists dose-dependently impaired the retrieval of spatial recognition memory in the Y-maze, and co-administration of memory ineffective doses of apomorphine (0.05 mg/kg), SKF38393 (0.01 mg/kg), or bromocriptine (0.05 mg/kg) and of morphine (2.5 mg/kg) resulted in impaired spatial recognition memory retrieval in mice. These findings suggest the existence of interactions between morphine and dopamine receptor agonists in memory processing and that activation of the dopamine system might contribute to morphine-induced impairment of memory, which could provide insight into human addiction.</p>","PeriodicalId":10259,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"45 4","pages":"335-343"},"PeriodicalIF":2.4000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1440-1681.12889","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1440-1681.12889","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3
Abstract
Both opiates and dopamine play important roles in learning and memory. Although synergistic action between these two neurotransmitters has been found, their functional roles remain unclear. Here, low dose morphine (2.5 mg/kg) and low dose dopamine receptor agonists (apomorphine 0.05 mg/kg; SKF38393 0.01 mg/kg; bromocriptine 0.05 mg/kg), which have no effects on spatial recognition memory, were injected intraperitoneally into mice 30 minutes before a memory test in a two-trial recognition Y-maze. The Y-maze is based on the innate tendency of rodents to explore novel environments and is therefore suitable for exploring the effects of morphine on learning and memory. Our results showed that both D1-like and D2-like dopamine receptor agonists dose-dependently impaired the retrieval of spatial recognition memory in the Y-maze, and co-administration of memory ineffective doses of apomorphine (0.05 mg/kg), SKF38393 (0.01 mg/kg), or bromocriptine (0.05 mg/kg) and of morphine (2.5 mg/kg) resulted in impaired spatial recognition memory retrieval in mice. These findings suggest the existence of interactions between morphine and dopamine receptor agonists in memory processing and that activation of the dopamine system might contribute to morphine-induced impairment of memory, which could provide insight into human addiction.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.