Feasibility of Na18F PET/CT and MRI for Noninvasive In Vivo Quantification of Knee Pathophysiological Bone Metabolism in a Canine Model of Post-traumatic Osteoarthritis.
Maria I Menendez, Bianca Hettlich, Lai Wei, Michael V Knopp
{"title":"Feasibility of Na<sup>18</sup>F PET/CT and MRI for Noninvasive In Vivo Quantification of Knee Pathophysiological Bone Metabolism in a Canine Model of Post-traumatic Osteoarthritis.","authors":"Maria I Menendez, Bianca Hettlich, Lai Wei, Michael V Knopp","doi":"10.1177/1536012117714575","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess and quantify by molecular imaging knee osseous metabolic changes serially in an in vivo canine model of posttraumatic osteoarthritis (PTOA) of the knee utilizing sodium fluoride (Na<sup>18</sup>F) positron emission tomography (PET)/computed tomography (CT) coregistered with magnetic resonance imaging (MRI).</p><p><strong>Materials and methods: </strong>Sodium fluoride PET imaging of 5 canines was performed prior to anterior cruciate ligament transection (ACLT) and 2 times post-ACLT (3 and 12 weeks). The PET/CT was coregistered with MRI, enabling serial anatomically guided visual and quantitative three-dimensional (3D) region of interest (ROI) assessment by maximum standardized uptake value.</p><p><strong>Results: </strong>Prior to ACLT, every 3D ROI assessed in both knees showed no Na<sup>18</sup>F uptake above background. The uptake of Na<sup>18</sup>F in the bone of the ACLT knees increased exponentially, presenting significantly higher uptake at 12 weeks in every region compared to the ACLT knees at baseline. Furthermore, the uninjured contralateral limb and the ipsilateral distal bones and joints presented Na<sup>18</sup>F uptake at 3 and 12 weeks post-ACLT.</p><p><strong>Conclusion: </strong>This study demonstrated that Na<sup>18</sup>F PET/CT coregistered with MRI is a feasible molecular imaging biomarker to assess knee osseous metabolic changes serially in an in vivo canine model of knee PTOA. Moreover, it brings a novel musculoskeletal preclinical imaging methodology that can provide unique insights into PTOA pathophysiology.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":"16 ","pages":"1536012117714575"},"PeriodicalIF":2.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1536012117714575","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1536012117714575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 15
Abstract
Purpose: To assess and quantify by molecular imaging knee osseous metabolic changes serially in an in vivo canine model of posttraumatic osteoarthritis (PTOA) of the knee utilizing sodium fluoride (Na18F) positron emission tomography (PET)/computed tomography (CT) coregistered with magnetic resonance imaging (MRI).
Materials and methods: Sodium fluoride PET imaging of 5 canines was performed prior to anterior cruciate ligament transection (ACLT) and 2 times post-ACLT (3 and 12 weeks). The PET/CT was coregistered with MRI, enabling serial anatomically guided visual and quantitative three-dimensional (3D) region of interest (ROI) assessment by maximum standardized uptake value.
Results: Prior to ACLT, every 3D ROI assessed in both knees showed no Na18F uptake above background. The uptake of Na18F in the bone of the ACLT knees increased exponentially, presenting significantly higher uptake at 12 weeks in every region compared to the ACLT knees at baseline. Furthermore, the uninjured contralateral limb and the ipsilateral distal bones and joints presented Na18F uptake at 3 and 12 weeks post-ACLT.
Conclusion: This study demonstrated that Na18F PET/CT coregistered with MRI is a feasible molecular imaging biomarker to assess knee osseous metabolic changes serially in an in vivo canine model of knee PTOA. Moreover, it brings a novel musculoskeletal preclinical imaging methodology that can provide unique insights into PTOA pathophysiology.
Molecular ImagingBiochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍:
Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.