Regularization of Ill-Posed Point Neuron Models.

IF 2.3 4区 医学 Q1 Neuroscience
Journal of Mathematical Neuroscience Pub Date : 2017-12-01 Epub Date: 2017-07-14 DOI:10.1186/s13408-017-0049-1
Bjørn Fredrik Nielsen
{"title":"Regularization of Ill-Posed Point Neuron Models.","authors":"Bjørn Fredrik Nielsen","doi":"10.1186/s13408-017-0049-1","DOIUrl":null,"url":null,"abstract":"<p><p>Point neuron models with a Heaviside firing rate function can be ill-posed. That is, the initial-condition-to-solution map might become discontinuous in finite time. If a Lipschitz continuous but steep firing rate function is employed, then standard ODE theory implies that such models are well-posed and can thus, approximately, be solved with finite precision arithmetic. We investigate whether the solution of this well-posed model converges to a solution of the ill-posed limit problem as the steepness parameter of the firing rate function tends to infinity. Our argument employs the Arzelà-Ascoli theorem and also yields the existence of a solution of the limit problem. However, we only obtain convergence of a subsequence of the regularized solutions. This is consistent with the fact that models with a Heaviside firing rate function can have several solutions, as we show. Our analysis assumes that the vector-valued limit function v, provided by the Arzelà-Ascoli theorem, is threshold simple: That is, the set containing the times when one or more of the component functions of v equal the threshold value for firing, has zero Lebesgue measure. If this assumption does not hold, we argue that the regularized solutions may not converge to a solution of the limit problem with a Heaviside firing function.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":"7 1","pages":"6"},"PeriodicalIF":2.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-017-0049-1","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-017-0049-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 3

Abstract

Point neuron models with a Heaviside firing rate function can be ill-posed. That is, the initial-condition-to-solution map might become discontinuous in finite time. If a Lipschitz continuous but steep firing rate function is employed, then standard ODE theory implies that such models are well-posed and can thus, approximately, be solved with finite precision arithmetic. We investigate whether the solution of this well-posed model converges to a solution of the ill-posed limit problem as the steepness parameter of the firing rate function tends to infinity. Our argument employs the Arzelà-Ascoli theorem and also yields the existence of a solution of the limit problem. However, we only obtain convergence of a subsequence of the regularized solutions. This is consistent with the fact that models with a Heaviside firing rate function can have several solutions, as we show. Our analysis assumes that the vector-valued limit function v, provided by the Arzelà-Ascoli theorem, is threshold simple: That is, the set containing the times when one or more of the component functions of v equal the threshold value for firing, has zero Lebesgue measure. If this assumption does not hold, we argue that the regularized solutions may not converge to a solution of the limit problem with a Heaviside firing function.

Abstract Image

病态点神经元模型的正则化。
带有Heaviside发射速率函数的点神经元模型可能是病态的。也就是说,初始条件到解映射可能在有限时间内不连续。如果使用一个Lipschitz连续但陡峭的发射速率函数,那么标准ODE理论意味着这样的模型是适定的,因此可以用有限精度算法近似地求解。研究了当射速函数的陡度参数趋于无穷时,该适定模型的解是否收敛于不适定极限问题的解。我们的论证采用Arzelà-Ascoli定理,也得到了极限问题解的存在性。然而,我们只得到正则解的一个子序列的收敛性。正如我们所示,这与具有Heaviside发射速率函数的模型可以有几个解的事实是一致的。我们的分析假设由Arzelà-Ascoli定理提供的向量值极限函数v是简单阈值:也就是说,包含v的一个或多个分量函数等于发射阈值的时间的集合具有零勒贝格测度。如果这个假设不成立,我们论证了正则解可能不收敛于具有Heaviside发射函数的极限问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信