Electronic Band Offset Determination of Oxides Grown by Atomic Layer Deposition on Silicon

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Edris Khorani;Christoph A. Messmer;Sophie L. Pain;Tim Niewelt;Brendan F. M. Healy;Ailish Wratten;Marc Walker;Nicholas E. Grant;John D. Murphy
{"title":"Electronic Band Offset Determination of Oxides Grown by Atomic Layer Deposition on Silicon","authors":"Edris Khorani;Christoph A. Messmer;Sophie L. Pain;Tim Niewelt;Brendan F. M. Healy;Ailish Wratten;Marc Walker;Nicholas E. Grant;John D. Murphy","doi":"10.1109/JPHOTOV.2023.3291048","DOIUrl":null,"url":null,"abstract":"Minimizing electrical losses at metal/silicon interfaces in high-efficiency single-junction silicon solar cells requires the use of carrier-selective passivating contacts. The electronic barrier heights at the insulator/silicon interface are necessary for calculating the probability of quantum tunneling of charge carriers at these interfaces. Thus, precise knowledge of these parameters is crucial for the development of contact schemes. Using a photoemission-based method, we experimentally determine the electronic band offsets of Al\n<sub>2</sub>\nO\n<sub>3</sub>\n, HfO\n<sub>2</sub>\n and SiO\n<sub>2</sub>\n layers grown by atomic layer deposition (ALD) on silicon. For Al\n<sub>2</sub>\nO\n<sub>3</sub>\n/Si, we determine a valence band offset (Δ\n<italic>E<sub>V</sub></i>\n) and conduction band offset (Δ\n<italic>E<sub>C</sub></i>\n) of 3.29 ± 0.07 eV and 2.24 ± 0.13 eV, respectively. For HfO\n<sub>2</sub>\n/Si, Δ\n<italic>E<sub>V</sub></i>\n and Δ\n<italic>E<sub>C</sub></i>\n are determined as 2.67 ± 0.07 eV and 1.81 ± 0.21 eV, while for SiO\n<sub>2</sub>\n/Si, Δ\n<italic>E<sub>V</sub></i>\n and Δ\n<italic>E<sub>C</sub></i>\n are 4.87 ± 0.07 eV and 2.61 ± 0.12 eV, respectively. Using technology computer-aided design simulations, we incorporate our experimental results to estimate the contact resistivity that would be attained at various dielectric layer thicknesses. We find that for achieving the 100 mΩ·cm\n<sup>2</sup>\n contact resistivity benchmark, Al\n<sub>2</sub>\nO\n<sub>3</sub>\n layers should be no thicker than 1.65 nm for a \n<italic>p</i>\n-type polysilicon-based hole-selective contact, assuming hole tunneling masses taken from the literature. Correspondingly, for HfO\n<sub>2</sub>\n and SiO\n<sub>2</sub>\n, an upper limit of 1.4 nm is determined as the thickness threshold in order to utilize these ALD-grown layers for contacts in high-performance silicon photovoltaics.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"13 5","pages":"682-690"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10178028/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Minimizing electrical losses at metal/silicon interfaces in high-efficiency single-junction silicon solar cells requires the use of carrier-selective passivating contacts. The electronic barrier heights at the insulator/silicon interface are necessary for calculating the probability of quantum tunneling of charge carriers at these interfaces. Thus, precise knowledge of these parameters is crucial for the development of contact schemes. Using a photoemission-based method, we experimentally determine the electronic band offsets of Al 2 O 3 , HfO 2 and SiO 2 layers grown by atomic layer deposition (ALD) on silicon. For Al 2 O 3 /Si, we determine a valence band offset (Δ EV ) and conduction band offset (Δ EC ) of 3.29 ± 0.07 eV and 2.24 ± 0.13 eV, respectively. For HfO 2 /Si, Δ EV and Δ EC are determined as 2.67 ± 0.07 eV and 1.81 ± 0.21 eV, while for SiO 2 /Si, Δ EV and Δ EC are 4.87 ± 0.07 eV and 2.61 ± 0.12 eV, respectively. Using technology computer-aided design simulations, we incorporate our experimental results to estimate the contact resistivity that would be attained at various dielectric layer thicknesses. We find that for achieving the 100 mΩ·cm 2 contact resistivity benchmark, Al 2 O 3 layers should be no thicker than 1.65 nm for a p -type polysilicon-based hole-selective contact, assuming hole tunneling masses taken from the literature. Correspondingly, for HfO 2 and SiO 2 , an upper limit of 1.4 nm is determined as the thickness threshold in order to utilize these ALD-grown layers for contacts in high-performance silicon photovoltaics.
硅原子层沉积法生长氧化物的电子带偏移测定
在高效单结硅太阳能电池中,最小化金属/硅界面的电损耗需要使用载流子选择性钝化触点。绝缘体/硅界面上的电子势垒高度是计算这些界面上载流子量子隧穿概率所必需的。因此,这些参数的精确知识对于接触方案的发展至关重要。利用光电发射方法,实验测定了原子层沉积(ALD)在硅上生长的Al2O3、HfO2和SiO2层的电子能带偏移量。对于Al2O3/Si,我们确定了价带偏移(ΔEV)和导带偏移(ΔEC)分别为3.29±0.07 eV和2.24±0.13 eV。对于HfO2/Si, ΔEV和ΔEC分别为2.67±0.07 eV和1.81±0.21 eV,对于SiO2/Si, ΔEV和ΔEC分别为4.87±0.07 eV和2.61±0.12 eV。利用计算机辅助设计模拟技术,我们结合我们的实验结果来估计在不同介电层厚度下将获得的接触电阻率。我们发现,为了达到100 mΩ·cm2的接触电阻率基准,对于p型多晶硅基的空穴选择接触,假设从文献中获得的空穴隧道质量,Al2O3层的厚度应不大于1.65 nm。相应地,对于HfO2和SiO2,确定了1.4 nm的上限作为厚度阈值,以便在高性能硅光伏电池中利用这些ald生长层的触点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信