{"title":"Robust Adaptive Beamforming Based on Subspace Decomposition, Steering Vector Estimation and Correction","authors":"Jian Yang;Yuwei Tu;Jian Lu;Zhiwei Yang","doi":"10.1109/JSEN.2022.3174848","DOIUrl":null,"url":null,"abstract":"Considering that the performance of adaptive arrays is sensitive to any type of mismatches, an innovative robust adaptive beamforming method based on covariance matrix reconstruction, subspace decomposition, steering vector estimation and correction is proposed. Based on Capon spatial spectrum, a group of angle sets containing all interfering signals are determined, and the interference covariance matrix can be reconstructed with a smaller integration interval. On the other hand, the sample covariance matrix can be decomposed into signal subspace and interference-plus-noise by using the principle of maximum correlation. Based on the interference-plus-noise subspace and the reconstructed signal-plus-noise covariance matrix, a new convex optimization model is built to estimate the steering vector of the desired signal. Then, an improved projection approach based on signal subspace is designed for correction to improve the robustness against the nominal direction vector mismatches. Simulation results demonstrate that the proposed method achieves better overall performance under multiple mismatches over a wide range of input signal-to-noise ratios.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"22 12","pages":"12260-12268"},"PeriodicalIF":4.3000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/9775699/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7
Abstract
Considering that the performance of adaptive arrays is sensitive to any type of mismatches, an innovative robust adaptive beamforming method based on covariance matrix reconstruction, subspace decomposition, steering vector estimation and correction is proposed. Based on Capon spatial spectrum, a group of angle sets containing all interfering signals are determined, and the interference covariance matrix can be reconstructed with a smaller integration interval. On the other hand, the sample covariance matrix can be decomposed into signal subspace and interference-plus-noise by using the principle of maximum correlation. Based on the interference-plus-noise subspace and the reconstructed signal-plus-noise covariance matrix, a new convex optimization model is built to estimate the steering vector of the desired signal. Then, an improved projection approach based on signal subspace is designed for correction to improve the robustness against the nominal direction vector mismatches. Simulation results demonstrate that the proposed method achieves better overall performance under multiple mismatches over a wide range of input signal-to-noise ratios.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice