Transient Analysis of Hybrid Cu-CNT On-Chip Interconnects Using MRA Technique

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amit Kumar;Brajesh Kumar Kaushik
{"title":"Transient Analysis of Hybrid Cu-CNT On-Chip Interconnects Using MRA Technique","authors":"Amit Kumar;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2021.3138344","DOIUrl":null,"url":null,"abstract":"This paper presents the transient analysis of the equivalent single conductor (ESC) model of hybrid Cu-CNT on-chip interconnects for nanopackaging using matrix rational approximation (MRA) modeling technique. The analysis of propagation delay and peak crosstalk noise is carried out for single and coupled Cu-CNT interconnect lines at 14 nm and 22 nm technology nodes. It has been observed that the proposed MRA model provides a speed-up factor of 131 compared to the HSPICE. An error of less than 1% confirms the accuracy of the proposed model compared to the SPICE simulations. It is observed that Cu-CNT lines are more immune to the crosstalk due to lesser coupling effects compared to Cu and CNT interconnects. The efficacy, accuracy, and comprehensive analysis using the proposed model ensures immense application possibility of the proposed model in the VLSI design automation tools at the nanopackaging level.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"24-35"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9680797/09663009.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9663009/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents the transient analysis of the equivalent single conductor (ESC) model of hybrid Cu-CNT on-chip interconnects for nanopackaging using matrix rational approximation (MRA) modeling technique. The analysis of propagation delay and peak crosstalk noise is carried out for single and coupled Cu-CNT interconnect lines at 14 nm and 22 nm technology nodes. It has been observed that the proposed MRA model provides a speed-up factor of 131 compared to the HSPICE. An error of less than 1% confirms the accuracy of the proposed model compared to the SPICE simulations. It is observed that Cu-CNT lines are more immune to the crosstalk due to lesser coupling effects compared to Cu and CNT interconnects. The efficacy, accuracy, and comprehensive analysis using the proposed model ensures immense application possibility of the proposed model in the VLSI design automation tools at the nanopackaging level.
基于MRA技术的Cu-CNT片上互连的瞬态分析
本文利用矩阵有理逼近(MRA)建模技术对纳米封装用铜碳纳米管片上互连等效单导体(ESC)模型进行了瞬态分析。在14 nm和22 nm技术节点上,对单个和耦合Cu-CNT互连线的传输延迟和峰值串扰噪声进行了分析。已经观察到,与HSPICE相比,提出的MRA模型提供了131的加速因子。与SPICE模拟相比,误差小于1%证实了所提出模型的准确性。与Cu和CNT互连相比,由于耦合效应较小,Cu-CNT线对串扰的免疫力更高。该模型的有效性、准确性和综合分析确保了该模型在纳米封装级VLSI设计自动化工具中的巨大应用可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信