GillesPy: A Python Package for Stochastic Model Building and Simulation

John H. Abel;Brian Drawert;Andreas Hellander;Linda R. Petzold
{"title":"GillesPy: A Python Package for Stochastic Model Building and Simulation","authors":"John H. Abel;Brian Drawert;Andreas Hellander;Linda R. Petzold","doi":"10.1109/LLS.2017.2652448","DOIUrl":null,"url":null,"abstract":"GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms. To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy-to-understand action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.","PeriodicalId":87271,"journal":{"name":"IEEE life sciences letters","volume":"2 3","pages":"35-38"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LLS.2017.2652448","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE life sciences letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7843624/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms. To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy-to-understand action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

Abstract Image

Abstract Image

Abstract Image

GillesPy:一个用于随机模型构建和仿真的Python包
GillesPy是一个开源Python包,用于随机生化系统的模型构建和模拟。GillesPy由一个用于模型构建的Python框架和一个基于Gillespie随机模拟算法的StochKit2高效模拟算法套件的接口组成。为了实现直观的模型构建和与科学Python堆栈的无缝集成,我们提供了一个易于理解的面向操作的编程接口。在这里,我们描述了这个包的组成部分,并提供了一个与计算生物学社区相关的详细示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信