Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis.

IF 2.4 4区 医学 Q3 TOXICOLOGY
Younes Bouallegui, Ridha Ben Younes, Faten Turki, Ridha Oueslati
{"title":"Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in mytilus galloprovincialis.","authors":"Younes Bouallegui,&nbsp;Ridha Ben Younes,&nbsp;Faten Turki,&nbsp;Ridha Oueslati","doi":"10.1080/1547691X.2017.1335810","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials have increasingly emerged as potential pollutants to aquatic organisms. Nanomaterials are known to be taken up by hemocytes of marine invertebrates including Mytilus galloprovincialis. Indeed, assessments of hemocyte-related parameters are a valuable tool in the determination of potentials for nanoparticle (NP) toxicity. The present study assessed the effects from two size types of silver nanoparticles (AgNP: <50 nm and <100 nm) on the frequency of hemocytes subpopulations as immunomodulation biomarkers exposed in a mollusk host. Studies were performed using exposures prior to and after inhibition of potential NP uptake pathways (i.e. clathrin- and caveolae-mediated endocytosis) and over different durations of exposure (3, 6 and 12 h). Differential hemocyte counts (DHC) revealed significant variations in frequency of different immune cells in mussels exposed for 3 hr to either AgNP size. However, as exposure duration progressed cell levels were subsequently differentially altered depending on particle size (i.e. no significant effects after 3 h with larger AgNP). AgNP effects were also delayed/varied after blockade of either clathrin- or caveolae-mediated endocytosis. The results also noted significant negative correlations between changes in levels hyalinocytes and acidophils or in levels basophils and acidophils as a result of AgNP exposure. From these results, we concluded AgNP effects on mussels were size and duration of exposure dependent. This study highlighted how not only was NP size important, but that differing internalization mechanisms could be key factors impacting on the potential for NP in the environment to induce immunomodulation in a model/test sentinel host like M. galloprovincialis.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"116-124"},"PeriodicalIF":2.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1335810","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2017.1335810","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 28

Abstract

Nanomaterials have increasingly emerged as potential pollutants to aquatic organisms. Nanomaterials are known to be taken up by hemocytes of marine invertebrates including Mytilus galloprovincialis. Indeed, assessments of hemocyte-related parameters are a valuable tool in the determination of potentials for nanoparticle (NP) toxicity. The present study assessed the effects from two size types of silver nanoparticles (AgNP: <50 nm and <100 nm) on the frequency of hemocytes subpopulations as immunomodulation biomarkers exposed in a mollusk host. Studies were performed using exposures prior to and after inhibition of potential NP uptake pathways (i.e. clathrin- and caveolae-mediated endocytosis) and over different durations of exposure (3, 6 and 12 h). Differential hemocyte counts (DHC) revealed significant variations in frequency of different immune cells in mussels exposed for 3 hr to either AgNP size. However, as exposure duration progressed cell levels were subsequently differentially altered depending on particle size (i.e. no significant effects after 3 h with larger AgNP). AgNP effects were also delayed/varied after blockade of either clathrin- or caveolae-mediated endocytosis. The results also noted significant negative correlations between changes in levels hyalinocytes and acidophils or in levels basophils and acidophils as a result of AgNP exposure. From these results, we concluded AgNP effects on mussels were size and duration of exposure dependent. This study highlighted how not only was NP size important, but that differing internalization mechanisms could be key factors impacting on the potential for NP in the environment to induce immunomodulation in a model/test sentinel host like M. galloprovincialis.

暴露时间、粒径和摄取途径对银纳米颗粒对褐贻贝循环免疫细胞作用的影响。
纳米材料日益成为水生生物的潜在污染物。纳米材料被海洋无脊椎动物(包括Mytilus galloprovincialis)的血细胞所吸收。事实上,血细胞相关参数的评估是确定纳米颗粒(NP)毒性潜力的有价值的工具。本研究评估了两种尺寸的银纳米颗粒(AgNP:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Immunotoxicology
Journal of Immunotoxicology 医学-毒理学
CiteScore
6.70
自引率
3.00%
发文量
26
审稿时长
1 months
期刊介绍: The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信