{"title":"Greenhouse Gas Detection Based on Infrared Nanophotonic Devices","authors":"Chunhui Hao;Xiao Fu;Xiaoyong Jiang;Yutong Li;Juyi Sun;Haitao Wu;He Zhu;Qing Li;Yunhai Li;Zhangcheng Huang;Fang Zhong;Ting He;Jinshui Miao;Weida Hu","doi":"10.1109/OJNANO.2022.3233485","DOIUrl":null,"url":null,"abstract":"Most greenhouse gases come from biological activities and industry which will lead to global warming and show an impact on human life. With the need of green transformation of the global economic structure and seeking for higher quality of human life, the detection and management of greenhouse gases, as well as most hazardous gases in the environment, are increasingly demanding. Applications in different fields require sensors that can detect gas volume fractions with magnitudes from 10–9 to 10–4. Greenhouse gas detection plays an important role both in the agriculture and industry field. In this review, we first summarize the mechanism of several common gas detectors used currently. Then, the advantages of nanostructured gas sensors are discussed. Finally, the applications of infrared gas sensors based on nanophotonic devices are described in detail. This review has been an outlook on the future development of infrared gas sensors based on nanophotonic devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"10-22"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10009893.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10009893/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Most greenhouse gases come from biological activities and industry which will lead to global warming and show an impact on human life. With the need of green transformation of the global economic structure and seeking for higher quality of human life, the detection and management of greenhouse gases, as well as most hazardous gases in the environment, are increasingly demanding. Applications in different fields require sensors that can detect gas volume fractions with magnitudes from 10–9 to 10–4. Greenhouse gas detection plays an important role both in the agriculture and industry field. In this review, we first summarize the mechanism of several common gas detectors used currently. Then, the advantages of nanostructured gas sensors are discussed. Finally, the applications of infrared gas sensors based on nanophotonic devices are described in detail. This review has been an outlook on the future development of infrared gas sensors based on nanophotonic devices.