Different forms of structural plasticity in the adult olfactory bulb.

Neurogenesis (Austin, Tex.) Pub Date : 2017-05-23 eCollection Date: 2017-01-01 DOI:10.1080/23262133.2017.1301850
Delphine Hardy, Armen Saghatelyan
{"title":"Different forms of structural plasticity in the adult olfactory bulb.","authors":"Delphine Hardy,&nbsp;Armen Saghatelyan","doi":"10.1080/23262133.2017.1301850","DOIUrl":null,"url":null,"abstract":"<p><p>The adult olfactory bulb (OB) continuously receives new interneurons that integrate into the functional neuronal network and that play an important role in odor information processing and olfactory behavior. Adult neuronal progenitors are derived from neural stem cells in the subventricular zone (SVZ) bordering the lateral ventricle. They migrate long distances along the rostral migratory stream (RMS) toward the OB where they differentiate into interneurons, mature, and establish synapses with tufted or mitral cells (MC), the principal neurons in the OB. The plasticity provided by both adult-born and pre-existing early-born neurons depends on the formation and pruning of new synaptic contacts that adapt the functioning of the bulbar network to changing environmental conditions. However, the formation of new synapses occurs over a long time scale (hours-days), whereas some changes in environmental conditions can occur more rapidly, requiring a much faster adjustment of neuronal networks. A new form of structural remodeling of adult-born, but not early-born, neurons was recently brought to light. This plasticity, which is based on the activity-dependent relocation of mature spines of GCs toward the dendrites of active principal cells, may allow a more rapid adjustment of the neuronal network in response to quick and persistent changes in sensory inputs. In this mini-review we discuss the different forms of structural plasticity displayed by adult-born and early-born neurons and the possibility that these different forms of structural remodeling may fulfill distinct roles in odor information processing.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2017.1301850","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2017.1301850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The adult olfactory bulb (OB) continuously receives new interneurons that integrate into the functional neuronal network and that play an important role in odor information processing and olfactory behavior. Adult neuronal progenitors are derived from neural stem cells in the subventricular zone (SVZ) bordering the lateral ventricle. They migrate long distances along the rostral migratory stream (RMS) toward the OB where they differentiate into interneurons, mature, and establish synapses with tufted or mitral cells (MC), the principal neurons in the OB. The plasticity provided by both adult-born and pre-existing early-born neurons depends on the formation and pruning of new synaptic contacts that adapt the functioning of the bulbar network to changing environmental conditions. However, the formation of new synapses occurs over a long time scale (hours-days), whereas some changes in environmental conditions can occur more rapidly, requiring a much faster adjustment of neuronal networks. A new form of structural remodeling of adult-born, but not early-born, neurons was recently brought to light. This plasticity, which is based on the activity-dependent relocation of mature spines of GCs toward the dendrites of active principal cells, may allow a more rapid adjustment of the neuronal network in response to quick and persistent changes in sensory inputs. In this mini-review we discuss the different forms of structural plasticity displayed by adult-born and early-born neurons and the possibility that these different forms of structural remodeling may fulfill distinct roles in odor information processing.

Abstract Image

Abstract Image

成人嗅球结构可塑性的不同形式。
成人嗅球(OB)不断接收新的中间神经元,这些中间神经元整合到功能性神经元网络中,在气味信息处理和嗅觉行为中发挥重要作用。成体神经祖细胞来源于毗邻侧脑室的脑室下区(SVZ)的神经干细胞。它们沿着吻侧迁移流(RMS)长途迁移到OB,在那里它们分化成中间神经元,成熟,并与OB中的主要神经元簇状细胞或二尖瓣细胞(MC)建立突触。成年和早期出生的神经元提供的可塑性取决于新突触接触的形成和修剪,这些新突触接触使球神经网络的功能适应不断变化的环境条件。然而,新突触的形成需要很长的时间尺度(小时-天),而环境条件的一些变化可能发生得更快,需要更快地调整神经元网络。一种新的成年而非早期出生的神经元结构重塑形式最近被发现。这种可塑性是基于GCs的成熟棘向活跃主细胞的树突的活动依赖的重新定位,可能允许神经元网络对快速和持续的感觉输入变化做出更快速的调整。在这篇综述中,我们讨论了成年和早期出生的神经元所表现出的不同形式的结构可塑性,以及这些不同形式的结构重塑在气味信息处理中发挥不同作用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信