{"title":"Possible contribution of quantum-like correlations to the placebo effect: consequences on blind trials.","authors":"Francis Beauvais","doi":"10.1186/s12976-017-0058-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Factors that participate in the biological changes associated with a placebo are not completely understood. Natural evolution, mean regression, concomitant procedures and other non specific effects are well-known factors that contribute to the \"placebo effect\". In this article, we suggest that quantum-like correlations predicted by a probabilistic modeling could also play a role.</p><p><strong>Results: </strong>An elementary experiment in biology or medicine comparing the biological changes associated with two placebos is modeled. The originality of this modeling is that experimenters, biological system and their interactions are described together from the standpoint of a participant who is uninvolved in the measurement process. Moreover, the small random probability fluctuations of a \"real\" experiment are also taken into account. If both placebos are inert (with only different labels), common sense suggests that the biological changes associated with the two placebos should be comparable. However, the consequence of this modeling is the possibility for two placebos to be associated with different outcomes due to the emergence of quantum-like correlations.</p><p><strong>Conclusion: </strong>The association of two placebos with different outcomes is counterintuitive and this modeling could give a framework for some unexplained observations where mere placebos are compared (in some alternative medicines for example). This hypothesis can be tested in blind trials by comparing local vs. remote assessment of correlations.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-017-0058-5","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-017-0058-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Background: Factors that participate in the biological changes associated with a placebo are not completely understood. Natural evolution, mean regression, concomitant procedures and other non specific effects are well-known factors that contribute to the "placebo effect". In this article, we suggest that quantum-like correlations predicted by a probabilistic modeling could also play a role.
Results: An elementary experiment in biology or medicine comparing the biological changes associated with two placebos is modeled. The originality of this modeling is that experimenters, biological system and their interactions are described together from the standpoint of a participant who is uninvolved in the measurement process. Moreover, the small random probability fluctuations of a "real" experiment are also taken into account. If both placebos are inert (with only different labels), common sense suggests that the biological changes associated with the two placebos should be comparable. However, the consequence of this modeling is the possibility for two placebos to be associated with different outcomes due to the emergence of quantum-like correlations.
Conclusion: The association of two placebos with different outcomes is counterintuitive and this modeling could give a framework for some unexplained observations where mere placebos are compared (in some alternative medicines for example). This hypothesis can be tested in blind trials by comparing local vs. remote assessment of correlations.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.