{"title":"Cue combination encoding via contextual modulation of V1 and V2 neurons.","authors":"Mark D Zarella, Daniel Y Ts'o","doi":"10.2147/EB.S105616","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons in early visual cortical areas encode the local properties of a stimulus in a number of different feature dimensions such as color, orientation, and motion. It has been shown, however, that stimuli presented well beyond the confines of the classical receptive field can augment these responses in a way that emphasizes these local attributes within the greater context of the visual scene. This mechanism imparts global information to cells that are otherwise considered local feature detectors and can potentially serve as an important foundation for surface segmentation, texture representation, and figure-ground segregation. The role of early visual cortex toward these functions remains somewhat of an enigma, as it is unclear how surface segmentation cues are integrated from multiple feature dimensions. We examined the impact of orientation- and motion-defined surface segmentation cues in V1 and V2 neurons using a stimulus in which the two features are completely separable. We find that, although some cells are modulated in a cue-invariant manner, many cells are influenced by only one cue or the other. Furthermore, cells that are modulated by both cues tend to be more strongly affected when both cues are presented together than when presented individually. These results demonstrate two mechanisms by which cue combinations can enhance salience. We find that feature-specific populations are more frequently encountered in V1, while cue additivity is more prominent in V2. These results highlight how two strongly interconnected areas at different stages in the cortical hierarchy can potentially contribute to scene segmentation.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/EB.S105616","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S105616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Neurons in early visual cortical areas encode the local properties of a stimulus in a number of different feature dimensions such as color, orientation, and motion. It has been shown, however, that stimuli presented well beyond the confines of the classical receptive field can augment these responses in a way that emphasizes these local attributes within the greater context of the visual scene. This mechanism imparts global information to cells that are otherwise considered local feature detectors and can potentially serve as an important foundation for surface segmentation, texture representation, and figure-ground segregation. The role of early visual cortex toward these functions remains somewhat of an enigma, as it is unclear how surface segmentation cues are integrated from multiple feature dimensions. We examined the impact of orientation- and motion-defined surface segmentation cues in V1 and V2 neurons using a stimulus in which the two features are completely separable. We find that, although some cells are modulated in a cue-invariant manner, many cells are influenced by only one cue or the other. Furthermore, cells that are modulated by both cues tend to be more strongly affected when both cues are presented together than when presented individually. These results demonstrate two mechanisms by which cue combinations can enhance salience. We find that feature-specific populations are more frequently encountered in V1, while cue additivity is more prominent in V2. These results highlight how two strongly interconnected areas at different stages in the cortical hierarchy can potentially contribute to scene segmentation.
期刊介绍:
Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.