Dirac Materials and an Identity for the Grand Potential of the Nondegenerate Statistical Thermodynamic Regime

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
NORMAN J. M. HORING
{"title":"Dirac Materials and an Identity for the Grand Potential of the Nondegenerate Statistical Thermodynamic Regime","authors":"NORMAN J. M. HORING","doi":"10.1109/OJNANO.2023.3234042","DOIUrl":null,"url":null,"abstract":"We examine the question “Can Dirac materials exist in a nondegenerate statistical state?,” deriving and employing an identity for the thermodynamic Grand Potential \n<inline-formula><tex-math>$\\Omega$</tex-math></inline-formula>\n (per unit volume/area) in the low density nondegenerate statistical regime, relating it to the density \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n as \n<inline-formula><tex-math>$\\Omega = -\\beta ^{-1} n$</tex-math> </inline-formula>\n (\n<inline-formula><tex-math>$\\beta ^{-1} = \\kappa _{B} T$</tex-math></inline-formula>\n is thermal energy, \n<inline-formula><tex-math>$\\kappa _{B}$</tex-math></inline-formula>\n is the Boltzmann constant, and \n<inline-formula><tex-math>$T$</tex-math></inline-formula>\n is Kelvin temperature). The implications of this identity for Dirac materials are explored. The identity is universally valid for all thermodynamic systems in equilibrium in the nondegenerate, low density statistical regime, irrespective of size, dimensionality or applied static fields. Phenomena that may contribute to the realization of such a nondegenerate statistical equilibrium state in Dirac materials are discussed.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"77-80"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10014530.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10014530/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the question “Can Dirac materials exist in a nondegenerate statistical state?,” deriving and employing an identity for the thermodynamic Grand Potential $\Omega$ (per unit volume/area) in the low density nondegenerate statistical regime, relating it to the density $n$ as $\Omega = -\beta ^{-1} n$ ( $\beta ^{-1} = \kappa _{B} T$ is thermal energy, $\kappa _{B}$ is the Boltzmann constant, and $T$ is Kelvin temperature). The implications of this identity for Dirac materials are explored. The identity is universally valid for all thermodynamic systems in equilibrium in the nondegenerate, low density statistical regime, irrespective of size, dimensionality or applied static fields. Phenomena that may contribute to the realization of such a nondegenerate statistical equilibrium state in Dirac materials are discussed.
狄拉克材料与非简并统计热力学体系的大势恒等式
我们考察了“狄拉克材料能否存在于非简并统计状态?”在低密度非简并统计体系中,推导并采用热力学大势$\Omega$(每单位体积/面积)的恒等式,将其与密度$n$联系为$\Omega = -\beta ^{-1} n$ ($\beta ^{-1} = \kappa _{B} T$为热能,$\kappa _{B}$为玻尔兹曼常数,$T$为开尔文温度)。对狄拉克材料的这种同一性的含义进行了探讨。这一恒等式对所有处于非简并、低密度统计体系平衡状态的热力学系统是普遍有效的,与大小、维数或施加的静态场无关。讨论了可能有助于在狄拉克材料中实现这种非简并统计平衡态的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信