{"title":"Image-driven modeling of the proliferation and necrosis of glioblastoma multiforme.","authors":"Vishal Patel, Leith Hathout","doi":"10.1186/s12976-017-0056-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The heterogeneity of response to treatment in patients with glioblastoma multiforme suggests that the optimal therapeutic approach incorporates an individualized assessment of expected lesion progression. In this work, we develop a novel computational model for the proliferation and necrosis of glioblastoma multiforme.</p><p><strong>Methods: </strong>The model parameters are selected based on the magnetic resonance imaging features of each tumor, and the proposed technique accounts for intrinsic cell division, tumor cell migration along white matter tracts, as well as central tumor necrosis. As a validation of this approach, tumor growth is simulated in the brain of a healthy adult volunteer using parameters derived from the imaging of a patient with glioblastoma multiforme. A mutual information metric is calculated between the simulated tumor profile and observed tumor.</p><p><strong>Results: </strong>The tumor progression profile generated by the proposed model is compared with those produced by existing models and with the actual observed tumor progression. Both qualitative and quantitative analyses show that the model introduced in this work replicates the observed progression of glioblastoma more accurately relative to prior techniques.</p><p><strong>Conclusions: </strong>This image-driven model generates improved tumor progression profiles and may contribute to the development of more reliable prognostic estimates in patients with glioblastoma multiforme.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12976-017-0056-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12976-017-0056-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9
Abstract
Background: The heterogeneity of response to treatment in patients with glioblastoma multiforme suggests that the optimal therapeutic approach incorporates an individualized assessment of expected lesion progression. In this work, we develop a novel computational model for the proliferation and necrosis of glioblastoma multiforme.
Methods: The model parameters are selected based on the magnetic resonance imaging features of each tumor, and the proposed technique accounts for intrinsic cell division, tumor cell migration along white matter tracts, as well as central tumor necrosis. As a validation of this approach, tumor growth is simulated in the brain of a healthy adult volunteer using parameters derived from the imaging of a patient with glioblastoma multiforme. A mutual information metric is calculated between the simulated tumor profile and observed tumor.
Results: The tumor progression profile generated by the proposed model is compared with those produced by existing models and with the actual observed tumor progression. Both qualitative and quantitative analyses show that the model introduced in this work replicates the observed progression of glioblastoma more accurately relative to prior techniques.
Conclusions: This image-driven model generates improved tumor progression profiles and may contribute to the development of more reliable prognostic estimates in patients with glioblastoma multiforme.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.